This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086592 #65 Dec 26 2024 10:15:49 %S A086592 2,3,3,4,4,5,5,5,5,7,7,7,7,8,8,6,6,9,9,10,10,11,11,9,9,12,12,11,11,13, %T A086592 13,7,7,11,11,13,13,14,14,13,13,17,17,15,15,18,18,11,11,16,16,17,17, %U A086592 19,19,14,14,19,19,18,18,21,21,8,8,13,13,16,16,17,17,17,17,22,22,19,19,23 %N A086592 Denominators in left-hand half of Kepler's tree of fractions. %C A086592 Form a tree of fractions by beginning with 1/1 and then giving every node i/j two descendants labeled i/(i+j) and j/(i+j). %C A086592 Level n of the left-hand half of the tree consists of 2^(n-1) nodes: 1/2; 1/3, 2/3; 1/4, 3/4, 2/5, 3/5; 1/5, 4/5, 3/7, 4/7, 2/7, 5/7, 3/8, 5/8; ... . %C A086592 The right-hand half is identical to the left-hand half. - _Michel Dekking_, Oct 05 2017 %C A086592 n>1 occurs in this sequence phi(n) = A000010(n) times, as it occurs in A007306 (_Franklin T. Adams-Watters_' comment), that is the sequence obtained by adding numerator and denominator in the Calkin-Wilf enumeration system of positive rationals. A020650(n)/A020651(n) is also an enumeration system of all positive rationals (Yu-Ting system), and in each level m >= 0 (ranks between 2^m and 2^(m+1)-1) rationals are the same in both systems. Thus a(n) has the same terms in each level as A007306. The same property occurs in all numerator+denominator sequences of enumeration systems of positive rationals, as, for example, A007306 (A007305+A047679), A071585 (A229742+A071766), and A268087 (A162909+A162910). - _Yosu Yurramendi_, Apr 06 2016 %D A086592 Johannes Kepler, Mysterium cosmographicum, Tuebingen, 1596, 1621, Caput XII. %D A086592 Johannes Kepler, Harmonice Mundi, Linz, 1619, Liber III, Caput II. %D A086592 Johannes Kepler, The Harmony of the World [1619], trans. E. J. Aiton, A. M. Duncan and J. V. Field, American Philosophical Society, Philadelphia, 1997, p. 163. %H A086592 Johannes Kepler, <a href="http://archive.org/details/ioanniskepplerih00kepl">Harmonices mundi libri V ...</a> (A Latin original scanned in Internet Archive. The fraction-tree is illustrated on the page 27 of the third book (Liber III), which is on the page 117 of the PDF-document.) %H A086592 Johannes Kepler, <a href="http://web.archive.org/web/20081009062459/http://ndirty.cute.fi/~karttu/Kepler/a086592.htm">Excerpt from the Chapter II of the Book III of the Harmony of the World: On the seven harmonic divisions of the string</a> (Illustrates the A020651/A086592-tree). %H A086592 OEIS Wiki, <a href="http://oeis.org/wiki/Historical_sequences">Historical sequences</a> %H A086592 Pelegrí Viader, Jaume Paradís and Lluís Bibiloni, <a href="https://doi.org/10.1006/jnth.1998.2294">A New Light on Minkowski's ?(x) Function</a>, J. Number Theory, 73 (2) (1998), 212-227. See p. 215. %H A086592 <a href="/index/Fo#fraction_trees">Index entries for fraction trees</a> %H A086592 <a href="/index/Mu#music">Index entries for sequences related to music</a> %F A086592 a(n) = A020650(n) + A020651(n) = A020650(2n). %F A086592 a(n) = A071585(A059893(n)), a(A059893(n)) = A071585(n), n > 0. - _Yosu Yurramendi_, May 30 2017 %F A086592 a(2*n-1) = A086593(n); a(2*n) = A086593(n+1), n > 0. - _Yosu Yurramendi_, May 16 2018 %F A086592 a(n) = A007306(A231551(n)), n > 0. - _Yosu Yurramendi_, Aug 07 2021 %t A086592 (* b = A020650 *) b[1] = 1; b[2] = 2; b[3] = 1; b[n_] := b[n] = Switch[ Mod[n, 4], 0, b[n/2 + 1] + b[n/2], 1, b[(n - 1)/2 + 1], 2, b[(n - 2)/2 + 1] + b[(n - 2)/2], 3, b[(n - 3)/2]]; a[n_] := b[2n]; Array[a, 100] (* _Jean-François Alcover_, Jan 22 2016 *) %o A086592 (R) %o A086592 maxlevel <- 15 %o A086592 d <- c(1,2) %o A086592 for(m in 0:maxlevel) %o A086592 for(k in 1:2^m) { %o A086592 d[2^(m+1) +k] <- d[k] + d[2^m+k] %o A086592 d[2^(m+1)+2^m+k] <- d[2^(m+1)+k] %o A086592 } %o A086592 b <- vector() %o A086592 for(m in 0:maxlevel) for(k in 0:(2^m-1)) b[2^m+k] <- d[2^(m+1)+k] %o A086592 a <- vector() %o A086592 for(n in 1:2^maxlevel) {a[2*n-1] <- b[n]; a[2*n] <- b[n+1]} %o A086592 a[1:128] %o A086592 # _Yosu Yurramendi_, May 16 2018 %Y A086592 Bisection of A020650. %Y A086592 See A093873/A093875 for the full tree. %Y A086592 A020651 gives the numerators. Bisection: A086593. Cf. A002487, A004169. %K A086592 nonn,frac,tabf %O A086592 1,1 %A A086592 _Antti Karttunen_, Aug 28 2003 %E A086592 Entry revised by _N. J. A. Sloane_, May 24 2004