This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086606 #9 Apr 18 2012 06:20:26 %S A086606 1,1,2,1,3,9,1,4,14,32,1,5,20,55,140,1,6,27,86,243,630,1,7,35,126,392, %T A086606 1099,2870,1,8,44,176,598,1808,5048,13256,1,9,54,237,873,2835,8433, %U A086606 23454,61389,1,10,65,310,1230,4272,13495,39640,109400,286710,1,11,77 %N A086606 Triangle, read by rows, where the n-th row is the first n terms of the n-th self-convolution of the sequence formed by flattening this triangle. %H A086606 Paul D. Hanna, <a href="/A086606/b086606.txt">Table of n, a(n) for n = 0..1035</a> %e A086606 This triangle begins: %e A086606 1; %e A086606 1, 2; %e A086606 1, 3, 9; %e A086606 1, 4, 14, 32; %e A086606 1, 5, 20, 55, 140; %e A086606 1, 6, 27, 86, 243, 630; %e A086606 1, 7, 35, 126, 392, 1099, 2870; %e A086606 1, 8, 44, 176, 598, 1808, 5048, 13256; ... %e A086606 The g.f. A(x) of this sequence as a flat list of coefficients begins: %e A086606 A(x) = 1 + x + 2*x^2 + x^3 + 3*x^4 + 9*x^5 + x^6 + 4*x^7 + 14*x^8 + 32*x^9 + x^10 + 5*x^11 + 20*x^12 + 55*x^13 + 140*x^14 +... %e A086606 such that the coefficients in A(x)^n, n>=1, forms the table: %e A086606 A^1: [(1),1, 2, 1, 3, 9, 1, 4, 14, 32, ...]; %e A086606 A^2: [(1, 2), 5, 6, 12, 28, 33, 52, 67, 164, ...]; %e A086606 A^3: [(1, 3, 9), 16, 33, 72, 125, 222, 330, 646, ...]; %e A086606 A^4: [(1, 4, 14, 32), 73, 164, 334, 660, 1152, 2184, ...]; %e A086606 A^5: [(1, 5, 20, 55, 140), 336, 755, 1625, 3195, 6315, ...]; %e A086606 A^6: [(1, 6, 27, 86, 243, 630),1532, 3546, 7635, 16020, ...]; %e A086606 A^7: [(1, 7, 35, 126, 392, 1099, 2870), 7092, 16443, 36666, ...]; %e A086606 A^8: [(1, 8, 44, 176, 598, 1808, 5048, 13256),32761, 77384, ...]; %e A086606 A^9: [(1, 9, 54, 237, 873, 2835, 8433, 23454, 61389),153007, ...]; ... %e A086606 where the lower triangular portion equals this sequence. %o A086606 (PARI) /* As a flattened triangle: */ %o A086606 {a(n)=local(t=(sqrt(8*n+1)+1)\2,A=1+sum(k=1,min(n-1,t),a(k)*x^k));if(n==0,1,polcoeff((A+x*O(x^n))^t,n-t*(t-1)/2))} %o A086606 for(n=0,60,print1(a(n),", ")) %Y A086606 Cf. A086607 (main diagonal), A086608 (row sums). %K A086606 nonn,tabl %O A086606 0,3 %A A086606 _Paul D. Hanna_, Jul 23 2003