cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086617 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/((1-x)(1-y)) + xy*f(x,y)^2.

This page as a plain text file.
%I A086617 #24 Oct 02 2019 02:54:37
%S A086617 1,1,1,1,2,1,1,3,3,1,1,4,7,4,1,1,5,13,13,5,1,1,6,21,33,21,6,1,1,7,31,
%T A086617 69,69,31,7,1,1,8,43,126,183,126,43,8,1,1,9,57,209,411,411,209,57,9,1,
%U A086617 1,10,73,323,815,1118,815,323,73,10,1,1,11,91,473,1471,2633,2633,1471,473,91,11,1
%N A086617 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/((1-x)(1-y)) + xy*f(x,y)^2.
%C A086617 Determinants of upper left n X n matrices results in A003046: {1,1,2,10,140,5880,776160,332972640,476150875200,...}, which is the product of the first n Catalan numbers (A000108).
%C A086617 May also be regarded as a Pascal-Catalan triangle. As a triangle, row sums are A086615, inverse has row sums 0^n.
%H A086617 Paul Barry, <a href="http://dx.doi.org/10.1016/j.laa.2015.10.032">Riordan arrays, generalized Narayana triangles, and series reversion</a>, Linear Algebra and its Applications, 491 (2016) 343-385.
%F A086617 As a triangle, T(n, k)=sum{j=0..n-k, C(n-k, j)C(k, j)C(j)}; T(n, k)=sum{j=0..n, C(n-k, n-j)C(k, j-k)C(j-k)}; T(n, k)=if(k<=n, sum{j=0..n, C(k, j)C(n-k, n-j)C(k-j)}, 0).
%F A086617 As a square array, T(n, k)=sum{j=0..n, C(n, j)C(k, j)C(j)}; As a square array, T(n, k)=sum{j=0..n+k, C(n, n+k-j)C(k, j-k)C(j-k)}; column k has g.f. sum{j=0..k, C(k, j)C(j)(x/(1-x))^j}x^k/(1-x).
%F A086617 G.f.: (1-sqrt(1-(4*x^2*y)/((1-x)*(1-x*y))))/(2*x^2*y). - _Vladimir Kruchinin_, Jan 15 2018
%e A086617 Rows begin:
%e A086617   1, 1,  1,   1,    1,    1,     1,     1, ...
%e A086617   1, 2,  3,   4,    5,    6,     7,     8, ...
%e A086617   1, 3,  7,  13,   21,   31,    43,    57, ...
%e A086617   1, 4, 13,  33,   69,  126,   209,   323, ...
%e A086617   1, 5, 21,  69,  183,  411,   815,  1471, ...
%e A086617   1, 6, 31, 126,  411, 1118,  2633,  5538, ...
%e A086617   1, 7, 43, 209,  815, 2633,  7281, 17739, ...
%e A086617   1, 8, 57, 323, 1471, 5538, 17739, 49626, ...
%e A086617 As a triangle:
%e A086617   1;
%e A086617   1,   1;
%e A086617   1,   2,   1;
%e A086617   1,   3,   3,   1;
%e A086617   1,   4,   7,   4,   1;
%e A086617   1,   5,  13,  13,   5,   1;
%e A086617   1,   6,  21,  33,  21,   6,   1;
%e A086617   1,   7,  31,  69,  69,  31,   7,   1;
%e A086617   1,   8,  43, 126, 183, 126,  43,   8,   1;
%t A086617 T[n_, k_] := Sum[Binomial[n, j] Binomial[k, j] CatalanNumber[j], {j, 0, n}];
%t A086617 Table[T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Oct 02 2019 *)
%Y A086617 Cf. A086618 (diagonal), A086615 (antidiagonal sums), A003046 (determinants).
%K A086617 nonn,tabl
%O A086617 0,5
%A A086617 _Paul D. Hanna_, Jul 24 2003
%E A086617 Additional comments from _Paul Barry_, Nov 17 2005
%E A086617 Edited by _N. J. A. Sloane_, Oct 16 2006