cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086620 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^2.

This page as a plain text file.
%I A086620 #7 Mar 30 2012 18:58:53
%S A086620 1,1,1,1,3,1,1,5,5,1,1,7,14,7,1,1,9,28,28,9,1,1,11,47,79,47,11,1,1,13,
%T A086620 71,175,175,71,13,1,1,15,100,331,504,331,100,15,1,1,17,134,562,1196,
%U A086620 1196,562,134,17,1,1,19,173,883,2464,3514,2464,883,173,19,1,1,21,217
%N A086620 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^2.
%C A086620 Determinants of upper left n X n matrices results in A086619: {1,2,10,150,7650,1438200,1051324200,...}, which is the products of the first n terms of the binomial transform of Catalan numbers (A007317): {1,2,5,15,51,188,731,2950,...}.
%F A086620 Contribution from _Paul Barry_, Feb 04 2009: (Start)
%F A086620 T(n,k)=sum{j=0..n+k, C(k,j-k)*C(n+2k-j,k)*if(k<=j,A000108(n-k),0)};
%F A086620 Regarded as a number triangle read by row, columns are generated by sum{j=0..k, C(k,j)*A000108(j)*x^j}*x^k/(1-x)^(k+1). (End)
%e A086620 Rows begin:
%e A086620 1,_1,__1,__1,___1,____1,____1,_____1, ...
%e A086620 1,_3,__5,__7,___9,___11,___13,____15, ...
%e A086620 1,_5,_14,_28,__47,___71,__100,___134, ...
%e A086620 1,_7,_28,_79,_175,__331,__562,___883, ...
%e A086620 1,_9,_47,175,_504,_1196,_2464,__4572, ...
%e A086620 1,11,_71,331,1196,_3514,_8764,_19244, ...
%e A086620 1,13,100,562,2464,_8764,26172,_67740, ...
%e A086620 1,15,134,883,4572,19244,67740,204831, ...
%Y A086620 Cf. A086621 (diagonal), A086622 (antidiagonal sums), A086619 (determinants).
%K A086620 nonn,tabl
%O A086620 0,5
%A A086620 _Paul D. Hanna_, Jul 24 2003