cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086623 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = (1-xy)/[(1-x)(1-y)] + xy*f(x,y)^2.

This page as a plain text file.
%I A086623 #3 Mar 30 2012 18:36:38
%S A086623 1,1,1,1,1,1,1,2,2,1,1,3,4,3,1,1,4,8,8,4,1,1,5,14,19,14,5,1,1,6,22,40,
%T A086623 40,22,6,1,1,7,32,76,100,76,32,7,1,1,8,44,132,222,222,132,44,8,1,1,9,
%U A086623 58,213,448,570,448,213,58,9,1,1,10,74,324,834,1316,1316,834,324,74,10,1,1
%N A086623 Symmetric square table of coefficients, read by antidiagonals, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = (1-xy)/[(1-x)(1-y)] + xy*f(x,y)^2.
%C A086623 The first row and column of 1's together form: (1-xy)/[(1-x)(1-y)], while the remaining square table (excluding the first row and column) give the coefficients of f(x,y)^2.
%e A086623 Rows begin:
%e A086623 1,1,_1,__1,___1,___1,____1,____1,_____1, ...
%e A086623 1,1,_2,__3,___4,___5,____6,____7,_____8, ...
%e A086623 1,2,_4,__8,__14,__22,___32,___44,____58, ...
%e A086623 1,3,_8,_19,__40,__76,__132,__213,___324, ...
%e A086623 1,4,14,_40,_100,_222,__448,__834,__1450, ...
%e A086623 1,5,22,_76,_222,_570,_1316,_2782,__5458, ...
%e A086623 1,6,32,132,_448,1316,_3442,_8180,_17928, ...
%e A086623 1,7,44,213,-834,2782,_8180,21685,_52694, ...
%e A086623 1,8,58,324,1450,5458,17928,52694,141112, ...
%Y A086623 Cf. A086624 (diagonal), A086625 (antidiagonal sums).
%K A086623 nonn,tabl
%O A086623 0,8
%A A086623 _Paul D. Hanna_, Jul 24 2003