This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086646 #59 Jan 21 2025 23:22:21 %S A086646 1,1,1,5,6,1,61,75,15,1,1385,1708,350,28,1,50521,62325,12810,1050,45, %T A086646 1,2702765,3334386,685575,56364,2475,66,1,199360981,245951615, %U A086646 50571521,4159155,183183,5005,91,1,19391512145,23923317720,4919032300,404572168,17824950,488488,9100,120,1 %N A086646 Triangle, read by rows, of numbers T(n,k), 0 <= k <= n, given by T(n,k) = A000364(n-k)*binomial(2*n, 2*k). %C A086646 The elements of the matrix inverse are apparently given by T^(-1)(n,k) = (-1)^(n+k)*A086645(n,k). - _R. J. Mathar_, Mar 14 2013 %C A086646 Let E(y) = Sum_{n >= 0} y^n/(2*n)! = cosh(sqrt(y)). Then this triangle is the generalized Riordan array (1/E(-y), y) with respect to the sequence (2*n)! as defined in Wang and Wang. - _Peter Bala_, Aug 06 2013 %C A086646 Let P_n be the poset of even size subsets of [2n] ordered by inclusion. Then Sum_{k=0..n}(-1)^(n-k)*T(n,k)*x^k is the characteristic polynomial of P_n. - _Geoffrey Critzer_, Feb 24 2021 %H A086646 Alois P. Heinz, <a href="/A086646/b086646.txt">Rows n = 0..140, flattened</a> %H A086646 Tom Copeland, <a href="https://tcjpn.wordpress.com/2020/07/11/skipping-over-dimensions-juggling-zeros-in-the-matrix/">Skipping over Dimensions, Juggling Zeros in the Matrix</a>, 2020. %H A086646 W. Wang and T. Wang, <a href="https://doi.org/10.1016/j.disc.2007.12.037">Generalized Riordan array</a>, Discrete Mathematics, Vol. 308, No. 24, 6466-6500. %F A086646 cosh(u*t)/cos(t) = Sum_{n>=0} S_2n(u)*(t^(2*n))*(1/(2*n)!). S_2n(u) = Sum_{k>=0} T(n,k)*u^(2*k). Sum_{k>=0} (-1)^k*T(n,k) = 0. Sum_{k>=0} T(n,k) = 2^n*A005647(n); A005647: Salie numbers. %F A086646 Triangle T(n,k) read by rows; given by [1, 4, 9, 16, 25, 36, 49, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938. %F A086646 Sum_{k=0..n} (-1)^k*T(n,k)*4^(n-k) = A000281(n). - _Philippe Deléham_, Jan 26 2004 %F A086646 Sum_{k=0..n} T(n,k)*(-4)^k*9^(n-k) = A002438(n+1). - _Philippe Deléham_, Aug 26 2005 %F A086646 Sum_{k=0..n} (-1)^k*9^(n-k)*T(n,k) = A000436(n). - _Philippe Deléham_, Oct 27 2006 %F A086646 From _Peter Bala_, Aug 06 2013: (Start) %F A086646 Let E(y) = Sum_{n >= 0} y^n/(2*n)! = cosh(sqrt(y)). Generating function: E(x*y)/E(-y) = 1 + (1 + x)*y/2! + (5 + 6*x + x^2)*y^2/4! + (61 + 75*x + 15*x^2 + x^3)*y^3/6! + .... The n-th power of this array has a generating function E(x*y)/E(-y)^n. In particular, the matrix inverse is a signed version of A086645 with a generating function E(-y)*E(x*y). %F A086646 Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} (-1)^(n-k)*binomial(2*n,2*k)*R(k,x) with initial value R(0,x) = 1. %F A086646 It appears that for arbitrary complex x we have lim_{n -> infinity} R(n,-x^2)/R(n,0) = cos(x*Pi/2). A stronger result than pointwise convergence may hold: the convergence may be uniform on compact subsets of the complex plane. This would explain the observation that the real zeros of the polynomials R(n,-x) seem to converge to the odd squares 1, 9, 25, ... as n increases. Some numerical examples are given below. Cf. A055133, A091042 and A103364. %F A086646 R(n,-1) = 0; R(n,-9) = (-1)^n*2*4^n; R(n,-25) = (-1)^n*2*(16^n - 4^n); %F A086646 R(n,-49) = (-1)^n*2*(36^n - 16^n + 4^n). (End) %e A086646 Triangle begins: %e A086646 1; %e A086646 1, 1; %e A086646 5, 6, 1; %e A086646 61, 75, 15, 1; %e A086646 1385, 1708, 350, 28, 1; %e A086646 50521, 62325, 12810, 1050, 45, 1; %e A086646 ... %e A086646 From _Peter Bala_, Aug 06 2013: (Start) %e A086646 Polynomial | Real zeros to 5 decimal places %e A086646 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = %e A086646 R(5,-x) | 1, 9.18062, 13.91597 %e A086646 R(10,-x) | 1, 9.00000, 25.03855, 37.95073 %e A086646 R(15,-x) | 1, 9.00000, 25.00000, 49.00895, 71.83657 %e A086646 R(20,-x) | 1, 9.00000, 25.00000, 49.00000, 81.00205, 114.87399 %e A086646 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = %e A086646 (End) %p A086646 A086646 := proc(n,k) %p A086646 if k < 0 or k > n then %p A086646 0 ; %p A086646 else %p A086646 A000364(n-k)*binomial(2*n,2*k) ; %p A086646 end if; %p A086646 end proc: # _R. J. Mathar_, Mar 14 2013 %t A086646 R[0, _] = 1; %t A086646 R[n_, x_] := R[n, x] = x^n - Sum[(-1)^(n-k) Binomial[2n, 2k] R[k, x], {k, 0, n-1}]; %t A086646 Table[CoefficientList[R[n, x], x], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Dec 19 2019 *) %t A086646 T[0, 0] := 1; T[n_, 0] := -Sum[(-1)^k T[n, k], {k, 1, n}]; T[n_, k_]/;0<k<=n := T[n-1, k-1] (n(2n-1))/(k(2k-1)); T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* _Oliver Seipel_, Jan 11 2025 *) %Y A086646 Cf. A000364, A005647, A084938. %Y A086646 Cf. A000281. %Y A086646 Cf. A000795 (row sums). %Y A086646 Cf. A055133, A086645 (unsigned matrix inverse), A103364, A104033. %Y A086646 T(2n,n) give |A214445(n)|. %K A086646 easy,nonn,tabl %O A086646 0,4 %A A086646 _Philippe Deléham_, Jul 26 2003