This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086659 #16 Jan 05 2022 18:16:14 %S A086659 1,1,3,4,4,6,11,20,10,10,41,66,60,20,15,162,287,231,140,35,21,715, %T A086659 1296,1148,616,280,56,28,3425,6435,5832,3444,1386,504,84,36,17722, %U A086659 34250,32175,19440,8610,2772,840,120,45,98253,194942,188375,117975,53460,18942,5082,1320,165,55 %N A086659 T(n,k) counts the set partitions of n containing k-1 blocks of length 1. %H A086659 Alois P. Heinz, <a href="/A086659/b086659.txt">Rows n = 2..142, flattened</a> %F A086659 E.g.f.: exp(x*y)*(exp(exp(x)-1-x)-1). - _Vladeta Jovovic_, Jul 28 2003 %e A086659 The 15 set partitions of {1,2,3,4} consist of 4 partitions with 0 blocks of length 1 : {{1,2,3,4}},{{1,2},{3,4}},{{1,3},{2,4}},{{1,4},{2,3}}, %e A086659 4 partitions with 1 block of length 1 : {{1},{2,3,4}},{{1,2,3},{4}},{{1,2,4},{3}},{{1,3,4},{2}} %e A086659 6 partitions with 2 blocks of length 1 : {{1},{2},{3,4}},{{1},{2,3},{4}},{{1},{2,4},{3}},{{1,2},{3},{4}},{{1,3},{2},{4}},{{1,4},{2},{3}}. %e A086659 (There are no partitions with n-1 blocks of length 1 and 1 with n of them) %e A086659 1; %e A086659 1, 3; %e A086659 4, 4, 6; %e A086659 11, 20, 10, 10; %e A086659 41, 66, 60, 20, 15; %e A086659 162, 287, 231, 140, 35, 21; %e A086659 ... %p A086659 with(combinat): %p A086659 b:= proc(n, i) option remember; expand(`if`(n=0, 1, %p A086659 `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!* %p A086659 b(n-i*j, i-1)*`if`(i=1, x^j, 1), j=0..n/i)))) %p A086659 end: %p A086659 T:= n-> (p-> seq(coeff(p, x, i), i=0..n-2))(b(n$2)): %p A086659 seq(T(n), n=2..16); # _Alois P. Heinz_, Mar 08 2015 %t A086659 Table[Count[Count[ #, {_Integer}]&/@SetPartitions[n], # ]&/@Range[0, n-2], {n, 2, 10}] %Y A086659 Row sums = Bell[n]-1 (A058692), first column=A000296, main diagonal = triangular numbers A000217. %K A086659 nonn,tabl,easy %O A086659 2,3 %A A086659 _Wouter Meeussen_, Jul 27 2003 %E A086659 More terms from _Vladeta Jovovic_, Jul 28 2003