This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086660 #11 Sep 08 2022 08:45:11 %S A086660 1,0,-2,-6,-2,90,598,1554,-10082,-164310,-1101242,-1496286,64767118, %T A086660 965876730,7104497398,57428274,-856472198402,-14195316779190, %U A086660 -122409183339482,25272908324034,21770258523698158 %N A086660 Stirling transform of Hermite numbers: Sum_{k=0..n} Stirling2(n,k) * HermiteH(k,0). %H A086660 G. C. Greubel, <a href="/A086660/b086660.txt">Table of n, a(n) for n = 0..500</a> %F A086660 E.g.f.: exp(-(exp(x)-1)^2). %t A086660 Table[Sum[StirlingS2[n,k]HermiteH[k,0],{k,0,n}],{n,0,20}] (* _Harvey P. Dale_, Mar 24 2013 *) %t A086660 With[{nmax = 50}, CoefficientList[Series[Exp[-(Exp[x] - 1)^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Jul 12 2018 *) %o A086660 (PARI) x='x+O('x^50); Vec(serlaplace(exp(-(exp(x)-1)^2))) \\ _G. C. Greubel_, Jul 12 2018 %o A086660 (Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-(Exp(x)-1)^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Jul 12 2018 %Y A086660 Cf. A067994, A052859. %K A086660 sign %O A086660 0,3 %A A086660 _Vladeta Jovovic_, Sep 12 2003