This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086671 #27 Jun 02 2022 11:11:36 %S A086671 1,2,2,4,3,5,3,6,5,7,4,10,4,7,7,10,5,12,5,13,8,9,5,16,8,10,10,14,6,18, %T A086671 6,15,10,11,10,23,7,12,11,21,7,20,7,17,16,12,7,26,10,19,13,19,8,24,13, %U A086671 23,13,14,8,34,8,14,18,23,14,25,9,21,14,25,9,37,9 %N A086671 Sum of floor(sqrt(d)) where d runs through the divisors of n. %H A086671 T. D. Noe, <a href="/A086671/b086671.txt">Table of n, a(n) for n = 1..10000</a> %F A086671 a(n) = Sum_{d|n} floor(sqrt(d)). - _Wesley Ivan Hurt_, Oct 25 2013 %F A086671 G.f.: sum(k>=1, floor(sqrt(k))*x^k/(1-x^k) ). - _Mircea Merca_, Feb 22 2014 %F A086671 a(n) = Sum_{i=1..floor(sqrt(n))} A135539(n,i^2). - _Ridouane Oudra_, Apr 15 2022 %e A086671 10 has divisors 1,2,5,10. floor(sqrt(d)) gives 1,1,2,3, therefore a(10)=7. %p A086671 A086671:= proc(n) %p A086671 add(floor(sqrt(d)), d = numtheory[divisors](n)) %p A086671 end proc; # _R. J. Mathar_, Oct 26 2013 %t A086671 Table[DivisorSum[n, Floor[Sqrt[#]] &], {n, 100}] (* _T. D. Noe_, Oct 28 2013 *) %o A086671 (PARI) for (n=1,100,s=0; fordiv(i=n,i,s+=floor(sqrt(i))); print1(","s)) %o A086671 (PARI) a(n) = sumdiv(n, d, sqrtint(d)); \\ _Michel Marcus_, Mar 03 2020 %Y A086671 Cf. A332931, A332932, A332933, A332934, A332935. %Y A086671 Cf. A135539. %K A086671 nonn %O A086671 1,2 %A A086671 _Jon Perry_, Jul 27 2003