A086675 Number of n X n (0,1)-matrices modulo cyclic permutations of the rows.
1, 2, 10, 176, 16456, 6710912, 11453291200, 80421421917440, 2305843009750581376, 268650182136584290872320, 126765060022823052739661424640, 241677817415439249618874010960064512, 1858395433210885261795036719974526548094976
Offset: 0
Examples
From _Gus Wiseman_, Mar 04 2019: (Start) Inequivalent representatives of the a(2) = 10 digraphical necklace edge-sets: {} {(1,1)} {(1,2)} {(1,1),(1,2)} {(1,1),(2,1)} {(1,1),(2,2)} {(1,2),(2,1)} {(1,1),(1,2),(2,1)} {(1,1),(1,2),(2,2)} {(1,1),(1,2),(2,1),(2,2)} (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..57
- Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. See p. 3.
Crossrefs
Programs
-
Mathematica
Table[Fold[ #1+EulerPhi[ #2] 2^(n^2 /#2)&, 0, Divisors[n]]/n, {n, 16}] (* second program *) rotdigra[g_,m_]:=Sort[g/.k_Integer:>If[k==m,1,k+1]]; Table[Length[Select[Subsets[Tuples[Range[n],2]],#=={}||#==First[Sort[Table[Nest[rotdigra[#,n]&,#,j],{j,n}]]]&]],{n,0,4}] (* Gus Wiseman, Mar 04 2019 *)
Formula
a(n) = (1/n)*Sum_{ d divides n } phi(d)*2^(n^2/d) for n > 0, a(0) = 1.
Extensions
More terms from Wouter Meeussen, Jul 29 2003
a(0)=1 prepended by Gus Wiseman, Mar 04 2019
Comments