A086713 A squarefree sequence: define a mapping from the set of strings over the alphabet {0,1,2} by f(0)=01201, f(1)=020121, f(2)=0212021 and f of the concatenation of s and t is the concatenation of f(s) and f(t). Then each of 0, f(0), f(f(0)), ... is an initial substring of the next; their limit is the infinite sequence given above.
0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 2, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 2, 1, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 0, 2, 1, 0, 1, 2, 0, 1, 0, 2, 1, 2, 0, 2, 1, 0, 2, 0
Offset: 0
Examples
f(f(0))=01201020121021202101201020121
References
- Jean Berstel and Christophe Reutenauer, Squarefree words, p. 31.
- M. Lothaire, Combinatorics on Words, Cambridge University Press, 1997.
Programs
-
Mathematica
f[s_] := Flatten[{{0, 1, 2, 0, 1}, {0, 2, 0, 1, 2, 1}, {0, 2, 1, 2, 0, 2, 1}}[[ #+1]]&/@s]; f[f[f[{0}]]]
Extensions
Edited by Dean Hickerson, Oct 19 2003
Comments