cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086724 Decimal expansion of L(2, chi3) = g(1)-g(2)+g(4)-g(5), where g(k) = Sum_{m>=0} (1/(6*m+k)^2).

Original entry on oeis.org

7, 8, 1, 3, 0, 2, 4, 1, 2, 8, 9, 6, 4, 8, 6, 2, 9, 6, 8, 6, 7, 1, 8, 7, 4, 2, 9, 6, 2, 4, 0, 9, 2, 3, 5, 6, 3, 6, 5, 1, 3, 4, 3, 3, 6, 5, 4, 5, 2, 8, 5, 4, 2, 0, 2, 2, 2, 1, 0, 0, 0, 6, 2, 9, 6, 6, 8, 8, 6, 9, 8, 4, 6, 5, 1, 6, 1, 8, 2, 1, 8, 0, 9, 2, 8, 6, 9, 5, 7, 0, 8, 3, 2, 2, 0, 9, 8, 6, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Comments

This number is L(2, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3, A102283. - Stuart Clary, Dec 17 2008
Equals 1/1^2 -1/2^2 +1/4^2 -1/5^2 +1/7^2 -1/8^2 +1/10^2 -1/11^2 +-... . This can be split as (1/1^2 -1/5^2 +1/7^2 -1/11^2 +-...) - (1/2^2 -1/4^2 +1/8^2 -1/10^2..) = (g(1)-g(5)) - (g(2)-g(4)). The first of these two series is A214552 and the second series is 1/(2^2)*(1-1/2^2 +1/4^2-1/5^2+-...), namely a quarter of the original series. Therefore 5/4 of this value here equals A214552. - R. J. Mathar, Jul 20 2012
Calegari, Dimitrov, & Tang prove that this number is irrational. - Charles R Greathouse IV, Aug 29 2024

Examples

			0.781302412896486296867...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Cf. A086722-A086731, A102283, A214549 (principal character), A214552.

Programs

  • Mathematica
    nmax = 1000; First[ RealDigits[(Zeta[2, 1/3] - Zeta[2, 2/3])/9, 10, nmax] ] (* Stuart Clary, Dec 17 2008 *)
  • PARI
    zetahurwitz(2,1/3)/9 - zetahurwitz(2,2/3)/9 \\ Charles R Greathouse IV, Jan 30 2018

Formula

From Jean-François Alcover, Jul 17 2014, updated Jan 23 2015: (Start)
Equals Sum_{n>=1} jacobi(-3, n+3)/n^2.
Equals (8/15)*4F3(1/2,1,1,2; 5/4,3/2,7/4; 3/4), where 4F3 is the generalized hypergeometric function.
Equals 4*Pi*log(3)/(3*sqrt(3)) - 4*Integral_{0..1} log(x+1)/(x^2-x+1) dx. (End)
Equals Product_{p prime} (1 - Kronecker(-3, p)/p^2)^(-1) = Product_{p prime != 3} (1 + (-1)^(p mod 3)/p^2)^(-1). - Amiram Eldar, Nov 06 2023