A086724 Decimal expansion of L(2, chi3) = g(1)-g(2)+g(4)-g(5), where g(k) = Sum_{m>=0} (1/(6*m+k)^2).
7, 8, 1, 3, 0, 2, 4, 1, 2, 8, 9, 6, 4, 8, 6, 2, 9, 6, 8, 6, 7, 1, 8, 7, 4, 2, 9, 6, 2, 4, 0, 9, 2, 3, 5, 6, 3, 6, 5, 1, 3, 4, 3, 3, 6, 5, 4, 5, 2, 8, 5, 4, 2, 0, 2, 2, 2, 1, 0, 0, 0, 6, 2, 9, 6, 6, 8, 8, 6, 9, 8, 4, 6, 5, 1, 6, 1, 8, 2, 1, 8, 0, 9, 2, 8, 6, 9, 5, 7, 0, 8, 3, 2, 2, 0, 9, 8, 6, 1
Offset: 0
Examples
0.781302412896486296867...
References
- L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.
Links
- D. H. Bailey, J. M. Borwein, and R. E. Crandall, Integrals of the Ising class, J. Phys. A 39 (2006) 12271, variable C_3.
- Frank Calegari, Vesselin Dimitrov, and Yunqing Tang, The linear independence of 1, ζ(2), and L(2,χ₋₃), arXiv:2408.15403 [math.NT], 2024.
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 98.
- Richard J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, L(m=3,r=2,s=2).
- Lorenz Milla, World record computation of Dirichlet L(-3,2) series (1,000,000,000,000 digits)
- Kh. Hessami Pilehrood and T. Hessami Pilehrood, Bivariate identities for values of the Hurwitz zeta function and supercongruences, El. J. Combin. 18 (2) (2012), Article P35, value of K after Theorem 4.
Crossrefs
Programs
-
Mathematica
nmax = 1000; First[ RealDigits[(Zeta[2, 1/3] - Zeta[2, 2/3])/9, 10, nmax] ] (* Stuart Clary, Dec 17 2008 *)
-
PARI
zetahurwitz(2,1/3)/9 - zetahurwitz(2,2/3)/9 \\ Charles R Greathouse IV, Jan 30 2018
Formula
From Jean-François Alcover, Jul 17 2014, updated Jan 23 2015: (Start)
Equals Sum_{n>=1} jacobi(-3, n+3)/n^2.
Equals (8/15)*4F3(1/2,1,1,2; 5/4,3/2,7/4; 3/4), where 4F3 is the generalized hypergeometric function.
Equals 4*Pi*log(3)/(3*sqrt(3)) - 4*Integral_{0..1} log(x+1)/(x^2-x+1) dx. (End)
Equals Product_{p prime} (1 - Kronecker(-3, p)/p^2)^(-1) = Product_{p prime != 3} (1 + (-1)^(p mod 3)/p^2)^(-1). - Amiram Eldar, Nov 06 2023
Comments