cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086754 Pascal's square pyramid read by slices, each slice being read by rows. Each entry in slice n is the sum of the 4 entries above it in slice n-1.

This page as a plain text file.
%I A086754 #34 Feb 09 2025 12:16:16
%S A086754 1,1,1,1,1,1,2,1,2,4,2,1,2,1,1,3,3,1,3,9,9,3,3,9,9,3,1,3,3,1,1,4,6,4,
%T A086754 1,4,16,24,16,4,6,24,36,24,6,4,16,24,16,4,1,4,6,4,1,1,5,10,10,5,1,5,
%U A086754 25,50,50,25,5,10,50,100,100,50,10,10,50,100,100,50,10,5,25,50,50,25,5,1,5,10
%N A086754 Pascal's square pyramid read by slices, each slice being read by rows. Each entry in slice n is the sum of the 4 entries above it in slice n-1.
%C A086754 Element (i,j) of slice n is the coefficient of x^i * y^j in the expansion of ((1+x)*(1+y))^n. - _Eitan Y. Levine_, Sep 03 2023
%H A086754 Rémy Sigrist, <a href="/A086754/b086754.txt">Table of n, a(n) for n = 1..10416</a>
%H A086754 The Lost Math Lessons, <a href="http://lostmathlessons.blogspot.com/2015/03/pascals-pyramids.html">Pascal's Pyramids</a>, Friday, March 6, 2015.
%F A086754 From _Eitan Y. Levine_, Sep 03 2023: (Start)
%F A086754 C(n,i)*C(n,j) gives the (i,j) element in slice n, where C(n,k) are the binomial coefficients A007318.
%F A086754 G.f.: 1/(1-z(1+x)(1+y)) = Sum_{n>=0,i=0..n,j=0..n} T(n,i,j) * z^n * x^i * y^j
%F A086754 G.f. for slice n: ((1+x)*(1+y))^n = Sum_{i=0..n,j=0..n} T(n,i,j) * x^i * y^j (End)
%e A086754 The first 4 slices are
%e A086754   1..1 1..1 2 1..1 3 3 1
%e A086754   ...1 1..2 4 2..3 9 9 3
%e A086754   ........1 2 1..3 9 9 3
%e A086754   ...............1 3 3 1
%p A086754 p:=n->seq(seq(binomial(n,i)*binomial(n,j),j=0..n),i=0..n): seq(p(n),n=0..5); # _Emeric Deutsch_, Nov 18 2004
%t A086754 A[m_]:=Module[{pt=Table[ConstantArray[1,{i,i}],{i,m}]},For[i=3,i<=m,i++,For[j=2,j<=i-1,j++,pt[[i,j,1]]=pt[[i-1,j-1,1]]+pt[[i-1,j,1]];pt[[i,1,j]]=pt[[i,j,1]];pt[[i,i,j]]=pt[[i,j,1]];pt[[i,j,i]]=pt[[i,j,1]];];For[j=2,j<=i-1,j++,For[k=2,k<=i-1,k++,pt[[i,j,k]]=pt[[i-1,j,k]]+pt[[i-1,j,k-1]]+pt[[i-1,j-1,k]]+pt[[i-1,j-1,k-1]];];];];pt//Flatten]; A[6] (* _Robert P. P. McKone_, Sep 14 2023, made from the PARI code *)
%o A086754 (PARI) { pt=vector(10,i,matrix(i,i,j,k,1)); for (i=3,10, for (j=2,i-1, pt[i][j,1]=pt[i-1][j-1,1]+pt[i-1][j,1]; pt[i][1,j]=pt[i][j,1]; pt[i][i,j]=pt[i][j,1]; pt[i][j,i]=pt[i][j,1]; ); for(j=2,i-1, for (k=2,i-1, pt[i][j,k]=pt[i-1][j,k]+pt[i-1][j,k-1]+pt[i-1][j-1,k]+pt[i-1][j-1,k-1]))); pt }
%o A086754 (Haskell)
%o A086754 a086754 n = a086754_list !! (n-1)
%o A086754 a086754_list = concat $ concat $ iterate ([[1,1],[1,1]] *) [1]
%o A086754 instance Num a => Num [a] where
%o A086754    fromInteger k = [fromInteger k]
%o A086754    (p:ps) + (q:qs) = p + q : ps + qs
%o A086754    ps + qs         = ps ++ qs
%o A086754    (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
%o A086754    _ * _               = []
%o A086754 -- _Reinhard Zumkeller_, Apr 02 2011
%Y A086754 Consider the sequence s[i, j](n) obtained by considering the (i, j)-th entry of the n-th slice. Then if [i, j]= [3, 2] we get A006002, if [3, 3] we get A000537, if [4, 2] we get A004320, if [4, 3] we get A004282.
%Y A086754 Cf. A046816.
%K A086754 nonn,easy,look
%O A086754 1,7
%A A086754 _Jon Perry_, Jul 31 2003
%E A086754 More terms from _Emeric Deutsch_, Nov 18 2004