cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086764 Triangle T(n, k), read by row, related to Euler's difference table A068106 (divide column k of A068106 by k!).

This page as a plain text file.
%I A086764 #62 Oct 05 2023 15:19:59
%S A086764 1,0,1,1,1,1,2,3,2,1,9,11,7,3,1,44,53,32,13,4,1,265,309,181,71,21,5,1,
%T A086764 1854,2119,1214,465,134,31,6,1,14833,16687,9403,3539,1001,227,43,7,1,
%U A086764 133496,148329,82508,30637,8544,1909,356,57,8,1
%N A086764 Triangle T(n, k), read by row, related to Euler's difference table A068106 (divide column k of A068106 by k!).
%C A086764 The k-th column sequence, k >= 0, without leading zeros, enumerates the ways to distribute n beads, n >= 1, labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and k+1 indistinguishable, ordered, fixed cords, each allowed to have any number of beads. Beadless necklaces as well as beadless cords each contribute a factor 1, hence for n=0 one has 1. See A000255 for the description of a fixed cord with beads. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - _Wolfdieter Lang_, Jun 02 2010
%H A086764 Indranil Ghosh, <a href="/A086764/b086764.txt">Rows 0..50, flattened</a>
%H A086764 W. Y. C. Chen et al., <a href="http://dx.doi.org/10.1016/j.disc.2011.06.006">Higher-order log-concavity in Euler's difference table</a>, Discrete Math., 311 (2011), 2128-2134. (These are the numbers d^k_n.)
%H A086764 Fanja Rakotondrajao, <a href="http://www.emis.de/journals/INTEGERS/papers/h36/h36.Abstract.html">k-Fixed-Points-Permutations</a>, Integers: Electronic journal of combinatorial number theory 7 (2007) A36.
%F A086764 T(n, n) = 1; T(n+1, n) = n.
%F A086764 T(n+2, n) = A002061(n+1) = n^2 + n + 1; T(n+3, n) = n^3 + 3*n^2 + 5*n + 2.
%F A086764 T(n, k) = (k + 1)*T(n, k + 1) - T(n-1, k); T(n, n) = 1; T(n, k) = 0, if k > n.
%F A086764 T(n, k) = (n-1)*T(n-1, k) + (n-k-1)*T(n-2, k).
%F A086764 k!*T(n, k) = A068106(n, k). [corrected by _Georg Fischer_, Aug 13 2022]
%F A086764 Sum_{k>=0} T(n, k) = A003470(n+1).
%F A086764 T(n, k) = (1/k!) * Sum_{j>=0} (-1)^j*binomial(n-k, j)*(n-j)!. - _Philippe Deléham_, Jun 13 2005
%F A086764 From _Peter Bala_, Aug 14 2008: (Start)
%F A086764 The following remarks all relate to the array read as a square array: e.g.f for column k: exp(-y)/(1-y)^(k+1); e.g.f. for array: exp(-y)/(1-x-y) = (1 + x + x^2 + x^3 + ...) + (x + 2*x^2 + 3*x^3 + 4*x^4 + ...)*y + (1 + 3*x + 7*x^2 + 13*x^3 + ...)*y^2/2! + ... .
%F A086764 This table is closely connected to the constant e. The row, column and diagonal entries of this table occur in series formulas for e.
%F A086764 Row n for n >= 2: e = n!*(1/T(n,0) + (-1)^n*[1/(1!*T(n,0)*T(n,1)) + 1/(2!*T(n,1)*T(n,2)) + 1/(3!*T(n,2)*T(n,3)) + ...]). For example, row 3 gives e = 6*(1/2 - 1/(1!*2*11) - 1/(2!*11*32) - 1/(3!*32*71) - ...). See A095000.
%F A086764 Column 0: e = 2 + Sum_{n>=2} (-1)^n*n!/(T(n,0)*T(n+1,0)) = 2 + 2!/(1*2) - 3 !/(2*9) + 4!/(9*44) - ... .
%F A086764 Column k, k >= 1: e = (1 + 1/1! + 1/2! + ... + 1/k!) + 1/k!*Sum_{n >= 0} (-1)^n*n!/(T(n,k)*T(n+1,k)). For example, column 3 gives e = 8/3 + 1/6*(1/(1*3) - 1/(3*13) + 2/(13*71) - 6/(71*465) + ...).
%F A086764 Main diagonal: e = 1 + 2*(1/(1*1) - 1/(1*7) + 1/(7*71) - 1/(71*1001) + ...).
%F A086764 First subdiagonal: e = 8/3 + 5/(3*32) - 7/(32*465) + 9/(465*8544) - ... .
%F A086764 Second subdiagonal: e = 2*(1 + 2^2/(1*11) - 3^2/(11*181) + 4^2/(181*3539) - ...). See A143413.
%F A086764 Third subdiagonal: e = 3 - (2*3*5)/(2*53) + (3*4*7)/(53*1214) - (4*5*9)/(1214*30637) + ... .
%F A086764 For the corresponding results for the constants 1/e, sqrt(e) and 1/sqrt(e) see A143409, A143410 and A143411 respectively. For other arrays similarly related to constants see A008288 (for log(2)), A108625 (for zeta(2)) and A143007 (for zeta(3)). (End)
%F A086764 G.f. for column k is hypergeom([1,k+1],[],x/(x+1))/(x+1). - _Mark van Hoeij_, Nov 07 2011
%F A086764 T(n, k) = (n!/k!)*hypergeom([k-n], [-n], -1). - _Peter Luschny_, Oct 05 2017
%e A086764 Formatted as a square array:
%e A086764       1      3     7    13   21   31  43 57 ... A002061;
%e A086764       2     11    32    71  134  227 356    ... A094792;
%e A086764       9     53   181   465 1001 1909        ... A094793;
%e A086764      44    309  1214  3539 8544             ... A094794;
%e A086764     265   2119  9403 30637                  ... A023043;
%e A086764    1854  16687 82508                        ... A023044;
%e A086764   14833 148329                              ... A023045;
%e A086764 Formatted as a triangular array (mirror of A076731):
%e A086764        1;
%e A086764        0      1;
%e A086764        1      1     1;
%e A086764        2      3     2     1;
%e A086764        9     11     7     3    1;
%e A086764       44     53    32    13    4    1;
%e A086764      265    309   181    71   21    5    1;
%e A086764     1854   2119  1214   465  134   31    6   1;
%e A086764    14833  16687  9403  3539 1001  227   43   7   1;
%e A086764   133496 148329 82508 30637 8544 1909  356  57   8   1;
%t A086764 T[n_,k_]:=(1/k!)*Sum[(-1)^j*Binomial[n-k,j]*(n-j)!,{j,0,n}];Flatten[Table[T[n,k],{n,0,11},{k,0,n}]] (* _Indranil Ghosh_, Feb 20 2017 *)
%t A086764 T[n_, k_] := (n!/k!) HypergeometricPFQ[{k-n},{-n},-1];
%t A086764 Table[T[n,k], {n,0,9}, {k,0,n}] // Flatten (* _Peter Luschny_, Oct 05 2017 *)
%o A086764 (Magma)
%o A086764 A086764:= func< n,k | (&+[(-1)^j*Binomial(n-k,j)*Factorial(n-j): j in [0..n]])/Factorial(k) >;
%o A086764 [A086764(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Oct 05 2023
%o A086764 (SageMath)
%o A086764 def A086764(n,k): return sum((-1)^j*binomial(n-k,j)*factorial(n-j) for j in range(n+1))//factorial(k)
%o A086764 flatten([[A086764(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Oct 05 2023
%Y A086764 Columns: A000166, A000155, A000153, A000261, A001909, A001910, A176732, A176733, A176734, A176735, A176736.
%Y A086764 Mirror image of A076731.
%Y A086764 Cf. A002061, A003470, A008288, A023043, A023044, A023045, A068106.
%Y A086764 Cf. A076731, A094792, A094793, A094794, A095000, A108625, A143007.
%Y A086764 Cf. A143409, A143410, A143411, A143413.
%K A086764 easy,nonn,tabl
%O A086764 0,7
%A A086764 _Philippe Deléham_, Aug 02 2003
%E A086764 More terms from _David Wasserman_, Mar 28 2005
%E A086764 Additional comments from _Zerinvary Lajos_, Mar 30 2006
%E A086764 Edited by _N. J. A. Sloane_, Sep 24 2011