cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086767 Last coefficient of the last term in the numerator of the simplified expansion of the solutions of FLT for n=2 for FLT n=1,2,3,..

This page as a plain text file.
%I A086767 #19 Feb 20 2025 06:42:16
%S A086767 1,1,1,1,1,3,1,1,1,5,1,3,1,7,1,1,1,9,1,5,1,11,1,3,1,13,1,7,1,15,1,1,1,
%T A086767 17,1,9,1,19,1,5,1,21,1,11,1,23,1,3,1,25,1,13,1,27,1,7,1,29,1,15,1,31,
%U A086767 1,1,1,33,1,17,1,35,1,9,1,37,1,19,1,39,1,5,1,41,1,21,1,43,1,11,1,45,1,23
%N A086767 Last coefficient of the last term in the numerator of the simplified expansion of the solutions of FLT for n=2 for FLT n=1,2,3,..
%C A086767 Integers a > b form the solution to FLT n = 2 as follows. (2ab)^2 = (a^2-b^2)^2 - (a^2+b^2)^2. The sequence is the coefficient c of the last b term in the numerator for the simplified expansion of the solution for n=2 as verification of FLT for n=1, 2, ...
%H A086767 Anonymous, <a href="https://web.archive.org/web/20050220082825/http://mathforum.org/discuss/sci.math/t/525751">Fermat's Theorem for Pythagorean Triples</a>.
%F A086767 a(n) = A004731(n+1)/A004730(n). - _Flávio V. Fernandes_, Feb 13 2025
%e A086767 b/a
%e A086767 1
%e A086767 (3*a^4 + b^4)/(4*b*a^3)
%e A086767 (a^4 + b^4)/(2*b^2*a^2)
%e A086767 (5*a^8 + 10*b^4*a^4 + b^8)/(16*b^3*a^5)
%e A086767 (3*a^8 + 10*b^4*a^4 + 3*b^8)/(16*b^4*a^4)
%e A086767 (7*a^12 + 35*b^4*a^8 + 21*b^8*a^4 + b^12)/(64*b^5*a^7)
%e A086767 (a^12 + 7*b^4*a^8 + 7*b^8*a^4 + b^12)/(16*b^6*a^6)
%e A086767 (9*a^16 + 84*b^4*a^12 + 126*b^8*a^8 + 36*b^12*a^4 + b^16)/(256*b^7*a^9)
%e A086767 (5*a^16 + 60*b^4*a^12 + 126*b^8*a^8 + 60*b^12*a^4 + 5*b^16)/(256*b^8*a^8)
%e A086767 ........
%e A086767 (K + cb^m)/2^m1b^m2c^m3
%e A086767 Seq = c for integers K,b,m1,m2,m3,n = 1,2,3...
%p A086767 sigma := proc(n) local i; add(i,i=convert(n,base,2)) end:
%p A086767 a := proc(n) if n=0 or type(n,odd) then 1 else if type(iquo(n,2),odd) then n/2 else n/2^(1-sigma(n)+sigma(n-1)) fi fi end: # _Peter Luschny_, Aug 03 2009
%o A086767 (PARI) \ verification of general solution in integers \ a>b,x = 2ab,y=a^2-b^2,z=a^2+b^2 \ or FLT n=2 x^n+y^n <> z^n = (2ab)^n + (a^2-b^2)^n <> \(a^2+b^2)^n for n > 2 flt(n,a1,b1) = for(x=0,n,print(f(x,a1,b1))) f(n,a,b) = simplify(((a^2+b^2)^n - (a^2-b^2)^n)/(2*a*b)^n) coeffb(m) = { for(y=1,m, n=y; if(n%2,x=1, while(n%2==0,n=n/2); x=n; ); print1(x",") ) }
%Y A086767 Cf. A004731, A004730.
%K A086767 easy,nonn,uned
%O A086767 0,6
%A A086767 _Cino Hilliard_, Aug 02 2003