cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086785 Primes found among the numerators of the continued fraction rational approximations to Pi.

This page as a plain text file.
%I A086785 #20 Dec 23 2018 12:40:00
%S A086785 3,103993,833719,4272943,411557987,
%T A086785 7809723338470423412693394150101387872685594299
%N A086785 Primes found among the numerators of the continued fraction rational approximations to Pi.
%C A086785 The numbers listed are primes. For m <= 10000 the only occurrence where both numerator and denominator are prime is 833719/265381.
%C A086785 The next term has 123 digits. - _Harvey P. Dale_, Dec 23 2018
%H A086785 Joerg Arndt, <a href="/A086785/b086785.txt">Table of n, a(n) for n = 1..15</a>
%H A086785 Cino Hilliard, <a href="http://groups.msn.com/BC2LCC/continuedfractions.msnw">Continued fractions rational approximation of numeric constants</a>. [needs login]
%e A086785 The first 4 rational approximations to Pi are 3/1, 22/7, 333/106, 355/113, 103993/33102 where 3 and 103993 are primes.
%t A086785 Select[Numerator[Convergents[Pi,100]],PrimeQ] (* _Harvey P. Dale_, Dec 23 2018 *)
%o A086785 (PARI) \\ Continued fraction rational approximation of numeric functions
%o A086785 cfrac(m,f) = x=f; for(n=0,m,i=floor(x); x=1/(x-i); print1(i,","))
%o A086785 cfracnumprime(m,f) = { cf = vector(100000); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(isprime(numer),print1(numer,",")); ) }
%o A086785 (PARI)
%o A086785 default(realprecision,10^5);
%o A086785 cf=contfrac(Pi);
%o A086785 n=0;
%o A086785 { for(k=1, #cf,  \\ generate b-file
%o A086785     pq = contfracpnqn( vector(k,j, cf[j]) );
%o A086785     p = pq[1,1];  q = pq[2,1];
%o A086785     if ( ispseudoprime(p), n+=1; print(n," ",p) );  \\ A086785
%o A086785 \\    if ( ispseudoprime(q), n+=1; print(n," ",q) );  \\ A086788
%o A086785 ); }
%o A086785 /* _Joerg Arndt_, Apr 21 2013 */
%Y A086785 Cf. A002485, A224936.
%K A086785 easy,nonn
%O A086785 1,1
%A A086785 _Cino Hilliard_, Aug 04 2003
%E A086785 Corrected by _Jens Kruse Andersen_, Apr 20 2013
%E A086785 Corrected offset, _Joerg Arndt_, Apr 21 2013