This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086788 #33 Nov 23 2019 04:45:10 %S A086788 7,113,265381,842468587426513207 %N A086788 Primes found among the denominators of the continued fraction rational approximations to Pi. %C A086788 The next term is too large to include. %H A086788 Joerg Arndt, <a href="/A086788/b086788.txt">Table of n, a(n) for n = 1..10</a> %H A086788 Cino Hilliard, <a href="http://groups.msn.com/BC2LCC/continuedfractions.msnw">Continued fractions rational approximation of numeric constants</a>. [needs login] %e A086788 The first 5 rational approximations to Pi are 3/1, 22/7, 333/106, 355/113, 103993/33102; of these, the prime denominators are 7 and 113. %o A086788 (PARI) %o A086788 cfracdenomprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(denom),print1(denom,",")); ) } %o A086788 (PARI) %o A086788 default(realprecision,10^5); %o A086788 cf=contfrac(Pi); %o A086788 n=0; %o A086788 { for(k=1, #cf, \\ generate b-file %o A086788 pq = contfracpnqn( vector(k,j, cf[j]) ); %o A086788 p = pq[1,1]; q = pq[2,1]; %o A086788 \\ if ( ispseudoprime(p), n+=1; print(n," ",p) ); \\ A086785 %o A086788 if ( ispseudoprime(q), n+=1; print(n," ",q) ); \\ A086788 %o A086788 ); } %o A086788 /* _Joerg Arndt_, Apr 21 2013 */ %Y A086788 Cf. A086791, A086785. %K A086788 easy,nonn %O A086788 1,1 %A A086788 _Cino Hilliard_, Aug 04 2003; corrected Jul 30 2004 %E A086788 Offset corrected by _Joerg Arndt_, Apr 21 2013