This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086791 #28 Nov 18 2019 01:37:44 %S A086791 2,3,11,19,193,49171,1084483,563501581931,332993721039856822081, %T A086791 3883282200001578119609988529770479452142437123001916048102414513139044082579 %N A086791 Primes found among the numerators of the continued fraction rational approximations to e. %H A086791 Joerg Arndt, <a href="/A086791/b086791.txt">Table of n, a(n) for n = 1..11</a> %H A086791 Cino Hilliard, <a href="http://web.archive.org/web/20080411094846/http://groups.msn.com/BC2LCC/continuedfractions.msnw">Continued fractions rational approximation of numeric constants</a>. %e A086791 The first 8 rational approximations to e are 2/1, 3/1, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71. The numerators 2, 3, 11, 19, 193 are primes. %o A086791 (PARI) %o A086791 \\ Continued fraction rational approximation of numeric constants f. m=steps. %o A086791 cfracnumprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer),print1(numer,",")); ) } %o A086791 (PARI) %o A086791 default(realprecision,10^5); %o A086791 cf=contfrac(exp(1)); %o A086791 n=0; %o A086791 { for(k=1, #cf, \\ generate b-file %o A086791 pq = contfracpnqn( vector(k,j, cf[j]) ); %o A086791 p = pq[1,1]; q = pq[2,1]; %o A086791 if ( ispseudoprime(p), n+=1; print(n," ",p) ); \\ A086791 %o A086791 \\ if ( ispseudoprime(q), n+=1; print(n," ",q) ); \\ A094008 %o A086791 ); } %o A086791 /* _Joerg Arndt_, Apr 21 2013 */ %Y A086791 Cf. A002119, A086788, A094008. %K A086791 easy,nonn %O A086791 1,1 %A A086791 _Cino Hilliard_, Aug 04 2003; corrected Jul 24 2004