cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086792 Orders of finite groups G with the property that the sum of the orders of all the proper normal subgroups of G equals the order of G.

Original entry on oeis.org

6, 12, 28, 30, 56, 360, 364, 380, 496, 760, 792, 900, 992, 1224, 1656, 1680, 1980
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 04 2003

Keywords

Comments

The only Abelian groups with this property are the cyclic groups C_n where n is a perfect number, so this sequence can be seen as a groups analogy of perfect numbers.
Derek Holt (mareg(AT)mimosa.csv.warwick.ac.uk) computed the orders of the non-Abelian groups in the sequence up to n=500 and commented "In general, if 2^n - 1 is a Mersenne prime, then 2^(n-1)*(2^n - 1) is a perfect number and the group with presentation < x,y | x^(2^n-1) = 1, y^(2^n) = 1, y^-1 x y = x^-1 > has order equal to the sum of the orders of its proper normal subgroups." So if n is an even perfect number, 2n also belongs to this sequence (the numbers 12 and 56 above).

Crossrefs

Subsequence of A060652.
Cf. A000396.

Extensions

a(10)-a(17) added using "Leinster groups" link by Eric M. Schmidt, May 02 2014