cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086799 Replace all trailing 0's with 1's in binary representation of n.

This page as a plain text file.
%I A086799 #60 Feb 16 2025 08:32:50
%S A086799 1,3,3,7,5,7,7,15,9,11,11,15,13,15,15,31,17,19,19,23,21,23,23,31,25,
%T A086799 27,27,31,29,31,31,63,33,35,35,39,37,39,39,47,41,43,43,47,45,47,47,63,
%U A086799 49,51,51,55,53,55,55,63,57,59,59,63,61,63,63,127,65,67,67,71,69,71
%N A086799 Replace all trailing 0's with 1's in binary representation of n.
%C A086799 a(k+1) = smallest number greater than k having in its binary representation exactly one 1 more than k has; A000120(a(n)) = A063787(n). - _Reinhard Zumkeller_, Jul 31 2010
%C A086799 a(n) is the least m >= n-1 such that the Hamming distance D(n-1,m) = 1. - _Vladimir Shevelev_, Apr 18 2012
%C A086799 The number of appearances of k equals the 2-adic valuation of k+1. - _Ali Sada_, Dec 20 2024
%H A086799 Reinhard Zumkeller, <a href="/A086799/b086799.txt">Table of n, a(n) for n = 1..10000</a>
%H A086799 Ralf Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences ...</a>
%H A086799 Ralf Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>
%H A086799 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BinaryCarrySequence.html">Binary Carry Sequence</a>
%H A086799 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OddPart.html">Odd Part</a>
%H A086799 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A086799 a(n) = n + 2^A007814(n) - 1.
%F A086799 a(n) is odd; a(n) = n iff n is odd.
%F A086799 a(a(n)) = a(n); A007814(a(n)) = a(n); A000265(a(n)) = a(n).
%F A086799 A023416(a(n)) = A023416(n) - A007814(n) = A086784(n).
%F A086799 A000120(a(n)) = A000120(n) + A007814(n).
%F A086799 a(2^n) = a(A000079(n)) = 2*2^n - 1 = A000051(n+1).
%F A086799 a(n) = if n is odd then n else a(n/2)*2 + 1.
%F A086799 a(n) = A006519(n) + n - 1. - _Reinhard Zumkeller_, Feb 02 2007
%F A086799 a(n) = n OR n-1 (bitwise OR of consecutive numbers). - _Russ Cox_, May 15 2007
%F A086799 a(2*n) = A038712(n) + 2*n. - _Reinhard Zumkeller_, Aug 07 2011
%F A086799 a((2*n-1)*2^p) = 2^(p+1)*n-1, p >= 0. - _Johannes W. Meijer_, Feb 01 2013
%F A086799 Sum_{k=1..n} a(k) ~ n^2/2 + (1/(2*log(2)))*n*log(n) + (3/4 + (gamma-1)/(2*log(2)))*n, where gamma is Euler's constant (A001620). - _Amiram Eldar_, Nov 24 2022
%e A086799 a(20) = a('10100') = '10100' + '11' = '10111' = 23.
%p A086799 nmax:=70: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 2^(p+1)*n-1 od: od: seq(a(n), n=1..nmax); # _Johannes W. Meijer_, Feb 01 2013
%t A086799 Table[BitOr[(n + 1), n], {n, 0, 100}] (* _Vladimir Joseph Stephan Orlovsky_, Jul 19 2011 *)
%o A086799 (C) int a(int n) { return n | (n-1); } // _Russ Cox_, May 15 2007
%o A086799 (Haskell)
%o A086799 a086799 n | even n    = (a086799 $ div n 2) * 2 + 1
%o A086799           | otherwise = n
%o A086799 -- _Reinhard Zumkeller_, Aug 07 2011
%o A086799 (PARI) a(n)=bitor(n,n-1) \\ _Charles R Greathouse IV_, Apr 17 2012
%o A086799 (Python)
%o A086799 def a(n): return n | (n-1)
%o A086799 print([a(n) for n in range(1, 71)]) # _Michael S. Branicky_, Jul 13 2022
%Y A086799 Cf. A000051, A000079, A000120, A000265, A001620, A006519, A007814, A023416, A038712, A063787, A086784.
%Y A086799 Cf. also A007088, A179857, A220466.
%K A086799 nonn,base
%O A086799 1,2
%A A086799 _Reinhard Zumkeller_, Aug 05 2003