A086806 Sarrus numbers k such that k-1 and k+1 have the same number of prime divisors (counted with multiplicity).
341, 13747, 19951, 35333, 60787, 137149, 150851, 387731, 458989, 617093, 769757, 1104349, 1251949, 1277179, 1397419, 1463749, 1507963, 1826203, 2134277, 2205967, 2617451, 2976487, 3345773, 4361389, 6474691, 6955541, 8095447
Offset: 1
Keywords
Examples
341 is a pseudoprime to base 2 while 340 = 2^2*5*17 and 342 = 2*3^2*19 each have four primes dividing them.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[ Table[ # [[2]], {1}] & /@ FactorInteger[n]]; Select[ Range[9224390], !PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PrimeFactorExponentsAdded[ # - 1] == PrimeFactorExponentsAdded[ # + 1] & ]
Extensions
More terms from Robert G. Wilson v, Aug 13 2003