cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A086819 Decimal expansion of Lochs's constant.

This page as a plain text file.
%I A086819 #38 Feb 16 2025 08:32:50
%S A086819 9,7,0,2,7,0,1,1,4,3,9,2,0,3,3,9,2,5,7,4,0,2,5,6,0,1,9,2,1,0,0,1,0,8,
%T A086819 3,3,7,8,1,2,8,4,7,0,4,7,8,5,1,6,1,2,8,6,6,1,0,3,5,0,5,2,9,9,3,1,2,5,
%U A086819 4,1,9,9,8,9,1,7,3,7,0,4,8,0,3,6,2,1,2,6,7,4,9,0,8,0,2,9,0,2,6,4,6,9,2,4
%N A086819 Decimal expansion of Lochs's constant.
%C A086819 Named after the Austrian mathematician Gustav Emil Maria Johannes Lochs (1907-1988). - _Amiram Eldar_, Feb 05 2022
%H A086819 Dan Lascu and Gabriela Ileana Sebe, <a href="https://arxiv.org/abs/2005.00380">Comparison of various continued fraction expansions: a Lochs-type approach</a>, arXiv:2005.00380 [math.NT], 2020.
%H A086819 Gustav Lochs, <a href="https://doi.org/10.1007/BF02993063">Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch</a>, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Volume 27, Issue 1-2 (April 1964), pp. 142-144.
%H A086819 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LochsConstant.html">Lochs' Constant</a>.
%H A086819 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LochsTheorem.html">Lochs' Theorem</a>.
%F A086819 Equals 6*log(2)*log(10)/Pi^2.
%F A086819 Equals 1/A062542 = 1/(2*A240995). - _Amiram Eldar_, Feb 05 2022
%e A086819 0.97027011439203392574025601921001083378128470478516...
%t A086819 RealDigits[(6*Log[2]Log[10])/Pi^2,10,120][[1]] (* _Harvey P. Dale_, Jul 13 2019 *)
%o A086819 (PARI) 6*log(2)*log(10)/Pi^2 \\ _Michel Marcus_, Oct 17 2014
%Y A086819 Cf. A062542, A240995.
%K A086819 cons,nonn
%O A086819 0,1
%A A086819 _Benoit Cloitre_, Aug 06 2003