This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086927 #25 Sep 08 2022 08:45:11 %S A086927 2,10,102,1030,10402,105050,1060902,10714070,108201602,1092730090, %T A086927 11035502502,111447755110,1125513053602,11366578291130, %U A086927 114791295964902,1159279537940150,11707586675366402,118235146291604170 %N A086927 a(n) = 10*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 10. %C A086927 a(n+1)/a(n) converges to (5+sqrt(26)) = 10.099019... %C A086927 Lim a(n)/a(n+1) as n approaches infinity = 0.099019... = 1/(5+sqrt(26)) = (sqrt(26)-5). %D A086927 Stefano Arnone, C Falcolini, F Moauro, M Siccardi, On Numbers in Different Bases: Symmetries and a Conjecture, Experimental Mathematics, Vol 26 2016, pp 197-209; http://dx.doi.org/10.1080/10586458.2016.1149125 %H A086927 Vincenzo Librandi, <a href="/A086927/b086927.txt">Table of n, a(n) for n = 0..1000</a> %H A086927 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A086927 <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a> %H A086927 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,1). %F A086927 a(n) = (5+sqrt(26))^n + (5-sqrt(26))^n. %F A086927 G.f.: (2-10*x)/(1-10*x-x^2). - _Philippe Deléham_, Nov 20 2008 %F A086927 a(n) = 2*A088320(n). - _R. J. Mathar_, Feb 06 2020 %e A086927 a(4) = 10402 = 10*a(3) + a(2) = 10*1030 + 102 = (5+sqrt(26))^4 + (5-sqrt(26))^4 = 10401.999903 + 0.000097 = 10402. %t A086927 RecurrenceTable[{a[0] == 2, a[1] == 10, a[n] == 10 a[n-1] + a[n-2]}, a, {n, 30}] (* _Vincenzo Librandi_, Sep 19 2016 *) %o A086927 (Magma) I:=[2,10]; [n le 2 select I[n] else 10*Self(n-1)+Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Sep 19 2016 %Y A086927 Cf. A036336. %K A086927 nonn,easy %O A086927 0,1 %A A086927 Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 21 2003 %E A086927 More terms from _Jon E. Schoenfield_, May 15 2010