This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A086966 #17 Aug 12 2023 00:42:52 %S A086966 0,0,0,1,1,1,2,0,1,1,0,2,1,0,0,2,1,1,2,0,0,2,4,1,1,0,1,2,0,0,0,2,1,0, %T A086966 0,1,1,1,0,0,1,0,2,2,2,1,1,0,0,2,1,2,2,1,1,1,1,1,0,0,3,1,1,0,0,1,2,1, %U A086966 0,1,1,2,2,1,1,0,1,0,2,2,1,1,0,1,0,1,0,1,0,2,0,0,1,0,1,2,2,1,1,0 %N A086966 Number of distinct zeros of x^4-x-1 mod prime(n). %C A086966 For the prime modulus 283, the polynomial can be factored as (x+18) (x+168) (x+190)^2, showing that x=93 is a zero of multiplicity 2. The discriminant of the polynomial is 283. - _T. D. Noe_, Aug 12 2004 %H A086966 Robert Israel, <a href="/A086966/b086966.txt">Table of n, a(n) for n = 1..10000</a> %H A086966 J.-P. Serre, <a href="https://doi.org/10.1090/S0273-0979-03-00992-3">On a theorem of Jordan</a>, Bull. Amer. Math. Soc., 40 (No. 4, 2003), 429-440, see pp. 433-434. %p A086966 f:= n -> nops([msolve(x^4-x-1,ithprime(n))]): %p A086966 map(f, [$1..100]); # _Robert Israel_, Aug 10 2023 %t A086966 Table[p=Prime[n]; cnt=0; Do[If[Mod[x^4-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 105}] (* _T. D. Noe_, Sep 24 2003 *) %Y A086966 Cf. A086937, A086965, A086967. %K A086966 nonn %O A086966 1,7 %A A086966 _N. J. A. Sloane_, Sep 24 2003 %E A086966 More terms from _T. D. Noe_, Sep 24 2003