This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087015 #15 Jul 21 2025 14:54:38 %S A087015 8,4,8,7,1,7,5,7,9,7,2,3,8,9,9,2,2,8,6,0,8,2,0,7,6,1,2,2,7,7,2,2,9,9, %T A087015 7,2,7,6,5,5,2,2,5,4,1,3,8,4,8,6,9,3,5,6,9,6,0,3,4,4,9,4,7,4,8,7,2,8, %U A087015 5,5,5,0,9,9,6,3,0,9,2,5,3,9,9,7,3,4,5,2,3,7,0,3,1,5,0,2,5,9,1,4,9,8 %N A087015 Decimal expansion of G(3/4) where G is the Barnes G-function. %H A087015 Junesang Choi, H. M. Srivastava, <a href="https://doi.org/10.1006/jmaa.1998.6216">Certain classes of series involving the Zeta Function</a>, J. Math. Anal. Applic. 231 (1999) 91-117 %H A087015 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a> %H A087015 Wikipedia, <a href="https://en.wikipedia.org/wiki/Barnes_G-function">Barnes G-function</a> %F A087015 G(1/4) * G(3/4) = A087013 * A087015 = exp(3/16) / (A^(9/4) * 2^(1/8) * Pi^(1/4) * GAMMA(1/4)^(1/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Mar 01 2015 %e A087015 0.84871... %t A087015 E^(3/32 + Catalan/(4*Pi))/(Glaisher^(9/8)*Gamma[3/4]^(1/4)) %t A087015 (* Or, since version 7.0, *) RealDigits[BarnesG[3/4], 10, 102] // First (* _Jean-François Alcover_, Jul 11 2014 *) %o A087015 (PARI) exp(Catalan/4/Pi+9/8*zeta'(-1))/gamma(3/4)^(1/4) \\ _Charles R Greathouse IV_, Dec 12 2013 %Y A087015 Cf. A087013, A087014, A087016, A087017. %K A087015 nonn,cons %O A087015 0,1 %A A087015 _Eric W. Weisstein_, Jul 30 2003