cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087028 Number of bounded (<=n) lunar divisors of n.

Table of values

n a(n)
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 10
11 10
12 9
13 8
14 7
15 6
16 5
17 4
18 3
19 2
20 9
21 9
22 9
23 8
24 7
25 6
26 5
27 4
28 3
29 2
30 8
31 8
32 8
33 8
34 7
35 6
36 5
37 4
38 3
39 2
40 7
41 7
42 7
43 7
44 7
45 6
46 5
47 4
48 3
49 2
50 6
51 6
52 6
53 6
54 6
55 6
56 5
57 4
58 3
59 2
60 5
61 5
62 5
63 5
64 5
65 5
66 5
67 4
68 3
69 2
70 4
71 4
72 4
73 4
74 4
75 4
76 4
77 4
78 3
79 2
80 3
81 3
82 3
83 3
84 3
85 3
86 3
87 3
88 3
89 2
90 2
91 2
92 2
93 2
94 2
95 2
96 2
97 2
98 2
99 2
100 19
101 10
102 9
103 8
104 7
105 6
106 5
107 4
108 3
109 2
110 100
111 91
112 17
113 15
114 13
115 11
116 9
117 7
118 5
119 3
120 25
121 25
122 81
123 22
124 19
125 16
126 13
127 10
128 7
129 4
130 22
131 22
132 22
133 64
134 19
135 16
136 13
137 10
138 7
139 4
140 19
141 19
142 19
143 19
144 49
145 16
146 13
147 10
148 7
149 4
150 16
151 16
152 16
153 16
154 16
155 36
156 13
157 10
158 7
159 4
160 13
161 13
162 13
163 13
164 13
165 13
166 25
167 10
168 7
169 4
170 10
171 10
172 10
173 10
174 10
175 10
176 10
177 16
178 7
179 4
180 7
181 7
182 7
183 7
184 7
185 7
186 7
187 7
188 9
189 4
190 4
191 4
192 4
193 4
194 4
195 4
196 4
197 4
198 4
199 4
200 17

List of values

[1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 10, 9, 8, 7, 6, 5, 4, 3, 2, 9, 9, 9, 8, 7, 6, 5, 4, 3, 2, 8, 8, 8, 8, 7, 6, 5, 4, 3, 2, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 5, 5, 5, 5, 5, 5, 5, 4, 3, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 19, 10, 9, 8, 7, 6, 5, 4, 3, 2, 100, 91, 17, 15, 13, 11, 9, 7, 5, 3, 25, 25, 81, 22, 19, 16, 13, 10, 7, 4, 22, 22, 22, 64, 19, 16, 13, 10, 7, 4, 19, 19, 19, 19, 49, 16, 13, 10, 7, 4, 16, 16, 16, 16, 16, 36, 13, 10, 7, 4, 13, 13, 13, 13, 13, 13, 25, 10, 7, 4, 10, 10, 10, 10, 10, 10, 10, 16, 7, 4, 7, 7, 7, 7, 7, 7, 7, 7, 9, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 17]