cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087048 Class numbers of indefinite quadratic forms over the integers in two variables with discriminant D = D(n) = A079896(n), n>=1.

This page as a plain text file.
%I A087048 #55 Jun 02 2025 08:41:34
%S A087048 1,1,2,1,1,1,2,2,2,1,2,2,1,2,1,2,2,2,1,1,2,2,4,1,2,1,2,2,1,2,2,2,2,2,
%T A087048 2,1,2,2,4,1,1,2,4,2,1,2,1,1,2,4,2,1,2,2,2,2,4,1,4,2,4,3,1,2,2,4,1,4,
%U A087048 2,1,4,4,2,1,2,2,2,1,2,2,2,2,4,1,1,2,2,4,4,2,2,1,2,2,2,4,4,4,2,3,2,1,2,2,4
%N A087048 Class numbers of indefinite quadratic forms over the integers in two variables with discriminant D = D(n) = A079896(n), n>=1.
%C A087048 An indefinite quadratic form over the integers in two variables F(x,y) := a*x^2 + b*x*y + c*y^2 has discriminant D := b^2 - 4*a*c >0 not a square (a and c non-vanishing); that is D=D(n)= A079896(n) = [5,8,12,13,17,20,21,...], n>=1.
%C A087048 For a given discriminant D from A079896(n) a reduced form [a,b,c] is defined by b>0 and f(D)-min(|2*a|,|2*c|) <= b < f(D), with f(D) := ceiling(sqrt(D)).
%C A087048 For a given discriminant D from A079896(n) every primitive reduced form [a,b,c] defines a periodic chain of such forms by applying repeatedly the transformation R(t)*[a,b,c]=[a'(t),b'(t),c'(t)]=[c,-b+2*c*t,F(-1,t)] with uniquely defined t= ceiling((f(D)+b)/(2*c))-1 if c>0 and t=-(ceiling((f(D)+b)/(2*|c|)-1)) if c<0. The number of such (different) periodic chains of primitive reduced forms is called the class number for this (indefinite) discriminant D from A079896(n). - _Wolfdieter Lang_, Jun 07 2013
%C A087048 A primitive form [a,b,c] has gcd(a,b,c)=1.
%C A087048 See the Appendix 2 of the Buell reference. pp. 235-243, for the class numbers, called H(D), for the fundamental discriminants 0 < D < 10000. Table 2A gives the class numbers for squarefree D == 1 (mod 4) and Table 2B the ones for D == 0 (mod 4), with  D/4 squarefree and not congruent to 1 modulo 4 (compare Buell, p. 69, 1. and 2.). - _Wolfdieter Lang_, May 29 2013
%C A087048 For an online program for D < 10^6 see the Keith Matthews link. - _Wolfdieter Lang_, Jul 24 2019
%D A087048 D. A. Buell, Binary Quadratic Forms, Springer, 1989.
%D A087048 A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, 5. Aufl., de Gruyter, Berlin, New York, 1973, ch. 31, pp. 112 ff.
%H A087048 Robin Visser, <a href="/A087048/b087048.txt">Table of n, a(n) for n = 1..10000</a>
%H A087048 S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Class number theory</a> [broken link]
%H A087048 Steven R. Finch, <a href="/A000924/a000924.pdf">Class number theory</a> [Cached copy, with permission of the author]
%H A087048 Wolfdieter Lang, <a href="/A087048/a087048.pdf">Table of n-1, D(n), a(n) for n=1, ..., 136</a>
%H A087048 Keith Matthews, <a href="http://www.numbertheory.org/php/classnopos0.html">Finding the class number h(d) of primitive binary quadratic forms of positive discriminant d</a>
%e A087048 n=3, D(3) = A079896(3) = 12, a(3) = 2 because there are the following two periodic chains of primitive reduced forms [a,b,c] (both with period length 2): [[-2, 2, 1], [1, 2, -2]] and [[-1, 2, 2], [2, 2, -1]].
%e A087048 n=14, D(14) = A079896(14) = 40, a(14) = 2 because there are the following two periodic chains of primitive reduced forms [a,b,c] (with period length 6 resp. 2): [[-3, 2, 3], [3, 4, -2], [-2, 4, 3], [3, 2, -3], [-3, 4, 2], [2, 4, -3]] and  [[-1, 6, 1], [1, 6, -1]].
%e A087048 n=36, D(36) = A079896(36) = 89, a(36) = 1 because there is only one periodic chain of primitive reduced forms [a,b,c] (with period length 14): [[ -5, 3, 4], [4, 5, -4], [-4, 3, 5], [5, 7, -2], [-2, 9, 1], [1, 9, -2], [-2, 7, 5], [5, 3, -4], [-4, 5, 4], [4, 3, -5], [-5, 7, 2], [2, 9, -1], [-1, 9, 2], [2, 7, -5]]. See p. 116 of the Scholz/Schoeneberg reference which starts with the form [1, 9, -2].
%e A087048 n=62, D(62) = A079896(62) = 148, a(62) = 3 because there are three periodic chains of primitive reduced forms [a,b,c] (with period length 6 and 6 and 2, resp.): [[-7, 6, 4], [4, 10, -3], [-3, 8, 7], [7, 6, -4], [-4, 10, 3], [3, 8, -7]] and [[-4, 6, 7], [7, 8, -3], [-3, 10, 4], [4, 6, -7], [-7, 8, 3], [3, 10, -4]] and [[-1, 12, 1], [1, 12, -1]]. See p. 116 of the Scholz/Schoeneberg reference which starts with the forms [4, 10, -3] and [3, 10, -4] and [1, 12, -1], resp.
%o A087048 (SageMath)
%o A087048 def a(n):
%o A087048     i, D, S = 1, Integer(5), []
%o A087048     while(i < n):
%o A087048         D += 1; i += 1*(((D%4) in [0, 1]) and (not D.is_square()))
%o A087048     for b in range(1, isqrt(D)+1):
%o A087048         if ((D-b^2)%4 != 0): continue
%o A087048         for a in Integer((D-b^2)/4).divisors():
%o A087048             if gcd([a, b, (D-b^2)/(4*a)]) > 1: continue
%o A087048             Q = BinaryQF(a, b, -(D-b^2)/(4*a))
%o A087048             if all([(not Q.is_equivalent(t)) for t in S]): S.append(Q)
%o A087048     return len(S)  # _Robin Visser_, May 31 2025
%Y A087048 See A006374 for another version. Cf. A079896.
%K A087048 nonn
%O A087048 1,3
%A A087048 _Wolfdieter Lang_, Aug 07 2003
%E A087048 Offset corrected by _Robin Visser_, May 31 2025