cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087050 Square root of the largest square >1 dividing the n-th nonsquarefree number.

Original entry on oeis.org

2, 2, 3, 2, 4, 3, 2, 2, 5, 3, 2, 4, 6, 2, 2, 3, 4, 7, 5, 2, 3, 2, 2, 3, 8, 2, 6, 5, 2, 4, 9, 2, 2, 3, 2, 4, 7, 3, 10, 2, 6, 4, 2, 3, 2, 11, 2, 5, 3, 8, 2, 3, 2, 2, 12, 7, 2, 5, 2, 3, 2, 4, 9, 2, 2, 13, 3, 2, 5, 4, 6, 2, 2, 3, 8, 14, 3, 10, 2, 3, 4, 2, 6, 2, 4, 15, 2, 2, 3, 2, 4, 11, 9, 2, 7, 2, 5, 6, 16, 2, 3
Offset: 1

Views

Author

Wolfdieter Lang, Sep 08 2003

Keywords

Examples

			n=10, A013929(10) = 27, a(10)^2 = 3^2 = 9. 27 = 9*3.
n=39, A013929(39) = 100, a(39)^2 = 10^2 = 100.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[300], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 11 2021 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, factorint
    def A087050(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod(p**(e>>1) for p, e in factorint(m).items() if e>1) # Chai Wah Wu, Jul 22 2024

Formula

a(n)^2 is the largest square factor (from A000290) of the nonsquarefree number A013929(n), n>=1.
a(n) = A000188(A013929(n)). - Amiram Eldar, Feb 11 2021
Sum_{k=1..n} a(k) ~ (n/(2*(zeta(2)-1))) * (log(n) + 3*gamma - 3 - 2*zeta'(2)/zeta(2) - log(1-1/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 14 2024