A087050 Square root of the largest square >1 dividing the n-th nonsquarefree number.
2, 2, 3, 2, 4, 3, 2, 2, 5, 3, 2, 4, 6, 2, 2, 3, 4, 7, 5, 2, 3, 2, 2, 3, 8, 2, 6, 5, 2, 4, 9, 2, 2, 3, 2, 4, 7, 3, 10, 2, 6, 4, 2, 3, 2, 11, 2, 5, 3, 8, 2, 3, 2, 2, 12, 7, 2, 5, 2, 3, 2, 4, 9, 2, 2, 13, 3, 2, 5, 4, 6, 2, 2, 3, 8, 14, 3, 10, 2, 3, 4, 2, 6, 2, 4, 15, 2, 2, 3, 2, 4, 11, 9, 2, 7, 2, 5, 6, 16, 2, 3
Offset: 1
Examples
n=10, A013929(10) = 27, a(10)^2 = 3^2 = 9. 27 = 9*3. n=39, A013929(39) = 100, a(39)^2 = 10^2 = 100.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := p^Floor[e/2]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; s /@ Select[Range[300], !SquareFreeQ[#] &] (* Amiram Eldar, Feb 11 2021 *)
-
Python
from math import isqrt, prod from sympy import mobius, factorint def A087050(n): def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return prod(p**(e>>1) for p, e in factorint(m).items() if e>1) # Chai Wah Wu, Jul 22 2024
Formula
Sum_{k=1..n} a(k) ~ (n/(2*(zeta(2)-1))) * (log(n) + 3*gamma - 3 - 2*zeta'(2)/zeta(2) - log(1-1/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 14 2024