A087052 Lunar triangular numbers: 0+1+2+3+...+n, where + is lunar addition.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199, 199
Offset: 0
Keywords
Links
- D. Applegate, C program for lunar arithmetic and number theory [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
- D. Applegate, M. LeBrun, N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- Index entries for sequences related to dismal (or lunar) arithmetic
Crossrefs
Cf. A051885.
Programs
-
Maple
(Continuing from A087062) dt := proc(n) local i,t1; t1 := 0; for i from 1 to n do t1 := dadd(t1,i); od: t1; end;
Comments