This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087086 #19 Aug 25 2025 02:12:33 %S A087086 0,1,2,4,6,8,12,16,18,20,22,24,28,32,40,48,56,64,66,68,70,72,76,80,82, %T A087086 84,86,88,92,96,104,112,120,128,132,144,148,160,176,192,196,208,212, %U A087086 224,240,256,258,264,272,274,280,288,296,304,312,320,322,328,336,338,344 %N A087086 Primitive sets of integers, each subset mapped onto a unique binary integer, values here shown in decimal. %C A087086 A primitive set of integers has no pair of elements one of which divides the other. Each element i in a subset contributes 2^(i-1) to the binary value for that subset. The integers missing from the sequence correspond to nonprimitive subsets. %D A087086 Alan Sutcliffe, Divisors and Common Factors in Sets of Integers, awaiting publication %e A087086 a(10)=22 since the 10th primitive set counting from 0 is {5,3,2}, which maps onto 10110 binary = 22 decimal. %e A087086 From _Gus Wiseman_, Oct 31 2019: (Start) %e A087086 The sequence of terms together with their binary expansions and binary indices begins: %e A087086 0: 0 ~ {} %e A087086 1: 1 ~ {1} %e A087086 2: 10 ~ {2} %e A087086 4: 100 ~ {3} %e A087086 6: 110 ~ {2,3} %e A087086 8: 1000 ~ {4} %e A087086 12: 1100 ~ {3,4} %e A087086 16: 10000 ~ {5} %e A087086 18: 10010 ~ {2,5} %e A087086 20: 10100 ~ {3,5} %e A087086 22: 10110 ~ {2,3,5} %e A087086 24: 11000 ~ {4,5} %e A087086 28: 11100 ~ {3,4,5} %e A087086 (End) %t A087086 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A087086 Select[Range[0,100],stableQ[Join@@Position[Reverse[IntegerDigits[#,2]],1],Divisible]&] (* _Gus Wiseman_, Oct 31 2019 *) %Y A087086 A051026 gives the number of primitive subsets of the integers 1 to n. %Y A087086 The version for prime indices (rather than binary indices) is A316476. %Y A087086 The relatively prime case is A328671. %Y A087086 Partitions with no consecutive divisible parts are A328171. %Y A087086 Compositions without consecutive divisible parts are A328460. %Y A087086 A ranking of antichains is A326704. %Y A087086 Cf. A000120, A048793, A070939, A285572, A285573, A303362, A304713, A305148, A328593. %K A087086 easy,nonn,base,changed %O A087086 0,3 %A A087086 Alan Sutcliffe (alansut(AT)ntlworld.com), Aug 14 2003