cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087108 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,4). The p-th row (p>=1) contains a(i,p) for i=1 to 4*p-3, where a(i,p) satisfies Sum_{i=1..n} C(i+3,4)^p = 5 * C(n+4,5) * Sum_{i=1..4*p-3} a(i,p) * C(n-1,i-1)/(i+4).

This page as a plain text file.
%I A087108 #24 Mar 11 2018 13:26:44
%S A087108 1,1,4,6,4,1,1,24,176,624,1251,1500,1070,420,70,1,124,3126,33124,
%T A087108 191251,681000,1596120,2543520,2780820,2058000,987000,277200,34650,1,
%U A087108 624,49376,1350624,18308751,146500500,763418870,2749648020,7101675070,13440210000
%N A087108 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,4). The p-th row (p>=1) contains a(i,p) for i=1 to 4*p-3, where a(i,p) satisfies Sum_{i=1..n} C(i+3,4)^p = 5 * C(n+4,5) * Sum_{i=1..4*p-3} a(i,p) * C(n-1,i-1)/(i+4).
%C A087108 From _Peter Bala_, Mar 11 2018: (Start)
%C A087108 The table entries T(n,k) are the coefficients when expressing the polynomial C(x+4,4)^p of degree 4*p in terms of falling factorials: C(x+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(n,k+1). (End)
%H A087108 G. C. Greubel, <a href="/A087108/b087108.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A087108 Dukes, C. D. White, <a href="http://arxiv.org/abs/1603.01589">Web Matrices: Structural Properties and Generating Combinatorial Identities</a>, arXiv:1603.01589 [math.CO], 2016.
%F A087108 a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+5, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+4, i-2*k)^(p-1) ]
%F A087108 From _Peter Bala_, Mar 11 2018: (Start)
%F A087108 The following remarks assume the row and column indices start at 0.
%F A087108 T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+4,4)^n. Equivalently, let v_n denote the sequence (1, 5^n, 15^n, 35^n, ...) regarded as an infinite column vector, where 1, 5, 15, 35, ... is the sequence binomial(n+4,4) - see A000332. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
%F A087108 Recurrence: T(n+1,k) = C(k+4,4)*T(n,k) + 4*C(k+3,4)*T(n,k-1) + 6*C(k+2,4)*T(n,k-2) + 4*C(k+1,4)*T(n,k-3) + C(k,4)*T(n,k-4) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 4*n.
%F A087108 n-th row polynomial R(n,x) = (1 + x)^4 o (1 + x)^4 o ... o (1 + x)^4 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
%F A087108 R(n,x) = Sum_{i >= 0} binomial(i+4,4)^n*x^i/(1 + x)^(i+1).
%F A087108 R(n+1,x) = 1/4! * (1 + x)^4 * (d/dx)^4(x^4*R(n,x)).
%F A087108 (1 - x)^(4*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A236463. (End)
%e A087108 Row 3 contains 1,24,176,...,70, so Sum_{i=1..n} C(i+3,4)^3 = 5 * C(n+4,5) * [ a(1,3)/5 + a(2,3)*C(n-1,1)/6 + a(3,3)*C(n-1,2)/7 + ... + a(9,3)*C(n-1,8)/13 ] = 5 * C(n+4,5) * [ 1/5 + 24*C(n-1,1)/6 + 176*C(n-1,2)/7 + ... + 70*C(n-1,8)/13 ]. Cf. A086024 for more details.
%e A087108 From _Peter Bala_, Mar 11 2018: (Start)
%e A087108 Table begins
%e A087108   n = 0 | 1
%e A087108   n = 1 | 1   4    6     4      1
%e A087108   n = 2 | 1  24  176   624   1251   1500    1070  420  70
%e A087108   n = 3 | 1 124 3126 33124 191251 681000 1596120 ...
%e A087108   ...
%e A087108 Row 2: C(i+4,4)^2 = C(i,0) + 24*C(i,1) + 176*C(i,2) + 624*C(i,3) + 1251*C(i,4) + 1500*C(i,5) + 1070*C(i,6) + 420*C(i,7) + 70*C(i,8). Hence, Sum_{i = 0..n-1} C(i+4,4)^2 =  C(n,1) + 24*C(n,2) + 176*C(n,3) + 624*C(n,4) + 1251*C(n,5) + 1500*C(n,6) + 1070*C(n,7) + 420*C(n,8) + 70*C(n,9) .(End)
%p A087108 seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+4, 4)^n, i = 0..k), k = 0..4*n), n = 0..6); # _Peter Bala_, Mar 11 2018
%t A087108 a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 5, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 4, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 4*p - 3}]//Flatten (* _G. C. Greubel_, Nov 23 2017 *)
%o A087108 (PARI) {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 5, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 4, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 4*p-3, print1(if(p==1,1,a(i,p)), ", "))) \\ _G. C. Greubel_, Nov 23 2017
%Y A087108 Cf. A000292, A024166, A087127, A024166, A085438, A085439, A085440, A085441, A085442, A087107, A000332, A086020, A086021, A086022, A000389, A086023, A086024, A087109, A000579, A086025, A086026, A087110, A000580, A086027, A086028, A087111, A027555, A086029, A086030.
%Y A087108 Cf. A087127, A236463.
%K A087108 easy,nonn,tabf
%O A087108 1,3
%A A087108 _André F. Labossière_, Aug 11 2003
%E A087108 Edited by _Dean Hickerson_, Aug 16 2003