cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087132 a(n) is the sum of the squares of the sizes of the conjugacy classes in the symmetric group S_n.

This page as a plain text file.
%I A087132 #49 Mar 29 2024 09:59:15
%S A087132 1,1,2,14,146,2602,71412,2675724,134269158,8747088662,717107850956,
%T A087132 72007758701716,8736187050160132,1258160557017484564,
%U A087132 212232765513231245096,41518913481377118146520,9309797624034705006898470,2374942651509463493006400390,683620331016710787068868581580
%N A087132 a(n) is the sum of the squares of the sizes of the conjugacy classes in the symmetric group S_n.
%C A087132 This is a natural quantity to consider when viewing the symmetric group (Sym_n) as a set. a(n) is the sum over all elements of Sym_n of the size of their conjugacy class. Each conjugacy class is thus counted as many times as its size, giving a sum of squares. - _Olivier Gérard_, Feb 12 2012
%H A087132 Alois P. Heinz, <a href="/A087132/b087132.txt">Table of n, a(n) for n = 0..254</a> (terms n = 1..57 from Vaclav Kotesovec)
%H A087132 Simon R. Blackburn, John R. Britnell, and Mark Wildon, <a href="http://arxiv.org/abs/1108.1784">The probability that a pair of elements of a finite group are conjugate</a>, arXiv:1108.1784 [math.GR], 2011-2012.
%H A087132 Philippe Flajolet, Éric Fusy, Xavier Gourdon, Daniel Panario and Nicolas Pouyanne, <a href="https://arxiv.org/abs/math/0606370">A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics</a>, arXiv:math/0606370 [math.CO], 2006.
%F A087132 a(n) = (n!)^2 * (c/n^2 + O((log n)/n^3)), where c = prod_{k>=1}sum_{n>=0}1/(k*n!)^2 ~ 4.263403514152669778298935... (see A246879). [Corrected by _Vaclav Kotesovec_, Sep 21 2014]
%p A087132 b:= proc(n, i) option remember; uses combinat; `if`(n=0, 1,
%p A087132       `if`(i<1, 0, add(b(n-i*j, i-1)*((i-1)!^j/j!*
%p A087132        multinomial(n, n-i*j, i$j, 0))^2, j=0..n/i)))
%p A087132     end:
%p A087132 a:= n-> b(n$2):
%p A087132 seq(a(n), n=0..21);  # _Alois P. Heinz_, Jul 27 2023
%t A087132 multinomial[n_, k_List] := n! / Times @@ (k!);
%t A087132 b[n_, i_] := b[n, i] = If[n == 0, 1,
%t A087132     If[i < 1, 0, Sum[b[n-i*j, i-1]*((i-1)!^j/j!*
%t A087132     multinomial[n, {n-i*j, Sequence@@Table[i, {j}], 0}])^2, {j, 0, n/i}]]];
%t A087132 a[n_] := b[n, n];
%t A087132 Table[a[n], {n, 0, 21}] (* _Jean-François Alcover_, Mar 29 2024, after _Alois P. Heinz_ *)
%o A087132 (Magma) [ &+[ c[2]^2 : c in ClassesData(Sym(n))] : n in [1..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
%Y A087132 Cf. A000041, A073906, A192983, A206820. - _Olivier Gérard_, Feb 12 2012
%Y A087132 Cf. A000142, A246879.
%K A087132 nonn
%O A087132 0,3
%A A087132 Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 18 2003
%E A087132 More terms from _Vladeta Jovovic_, Oct 22 2003
%E A087132 More terms from _Vaclav Kotesovec_, Sep 21 2014
%E A087132 a(0)=1 prepended by _Alois P. Heinz_, Jul 27 2023