This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087154 #22 Jan 20 2025 12:36:54 %S A087154 1,0,1,1,0,2,1,2,3,2,4,4,4,7,6,9,9,11,14,14,19,21,23,29,31,36,43,46, %T A087154 56,62,70,81,91,103,117,132,148,167,188,211,237,266,297,332,371,414, %U A087154 461,515,571,634,708,780,870,963,1062,1180,1300,1436,1588,1747,1929,2123 %N A087154 Number of partitions of n into distinct nonsquares. %H A087154 Vaclav Kotesovec, <a href="/A087154/b087154.txt">Table of n, a(n) for n = 0..10000</a> %F A087154 G.f.: Product_{m>0} (1+x^m)/(1+x^(m^2)). - _Vladeta Jovovic_, Jul 31 2004 %F A087154 a(n) ~ exp(Pi*sqrt(n/3) - 3^(1/4) * (sqrt(2)-1) * Zeta(3/2) * n^(1/4) / 2 - 3*(sqrt(2)-1)^2 * Zeta(3/2)^2 / (32*Pi)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Dec 30 2016 %e A087154 n=7: 2+5 = 7: a(7)=2; %e A087154 n=8: 2+6 = 3+5 = 8: a(8)=3; %e A087154 n=9: 2+7 = 3+6: a(9)=2. %t A087154 nmax = 100; CoefficientList[Series[Product[(1 + x^k)/(1 + x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Dec 29 2016 *) %o A087154 (Haskell) %o A087154 a087154 = p a000037_list where %o A087154 p _ 0 = 1 %o A087154 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m %o A087154 -- _Reinhard Zumkeller_, Apr 25 2013 %Y A087154 Cf. A087153, A033461, A000041, A000037. %Y A087154 Cf. A225045, A280264. %K A087154 nonn %O A087154 0,6 %A A087154 _Reinhard Zumkeller_, Aug 21 2003 %E A087154 Zeroth term added by _Franklin T. Adams-Watters_, Jan 25 2010