This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087166 #9 May 01 2020 21:25:06 %S A087166 17,31,67,73,107,109,127,151,157,173,181,191,197,211,227,241,257,271, %T A087166 277,307,313,337,353,373,379,401,409,419,421,433,443,457,461,463,487, %U A087166 521,523,541,577,587,601,617,619,631,647,661,673,683,701,719,727,743,757,761,773,787,797,809,857,859 %N A087166 Primes which are palindromes in 3 or more bases. %C A087166 For the purposes of this sequence, single digits are not counted as palindromes (otherwise every number n is a palindrome in all bases > n). - _Robert Israel_, May 01 2020 %H A087166 Robert Israel, <a href="/A087166/b087166.txt">Table of n, a(n) for n = 1..5867</a> %e A087166 31 is in the list, as 31 base 2 = 11111, 31 base 5 = 111 and 31 base 30 = 11, i.e. three different ways. %p A087166 N:= 1000: # for all terms <= N %p A087166 digrev:= proc(n,b) %p A087166 local L,i; %p A087166 L:= convert(n,base,b); %p A087166 add(L[-i]*b^(i-1),i=1..nops(L)) %p A087166 end proc: %p A087166 bpalis:= proc(b, N) %p A087166 local Res,dmax,d,m; %p A087166 dmax:= floor(log[b](N))+1; %p A087166 if dmax < 2 then return [] fi; %p A087166 Res:= seq(i*(b+1),i=1..b-1); %p A087166 for d from 3 to dmax do %p A087166 if d::even then %p A087166 m:= d/2; %p A087166 Res:= Res, seq(n*b^m + digrev(n,b),n=b^(m-1)..b^m-1); %p A087166 else %p A087166 m:= (d-1)/2; %p A087166 Res:= Res, seq(seq(n*b^(m+1)+y*b^m+digrev(n,b), y=0..b-1), n=b^(m-1)..b^m-1); %p A087166 fi %p A087166 od; %p A087166 select(`<=`,[Res], N) %p A087166 end proc: %p A087166 V:= Vector(N): %p A087166 for b from 2 to N-1 do %p A087166 bp:= bpalis(b,N); %p A087166 V[bp]:= V[bp] +~ 1 %p A087166 od: %p A087166 select(p -> isprime(p) and V[p] >= 3, [seq(i,i=3..N,2)]); # _Robert Israel_, May 01 2020 %Y A087166 Primes in A253594. %K A087166 base,nonn %O A087166 1,1 %A A087166 _Randy L. Ekl_, Oct 18 2003 %E A087166 Corrected by _Robert Israel_, May 01 2020