This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087193 #15 Apr 25 2025 04:28:02 %S A087193 3,9,156,3431,2280921,64092034,55747783602,1700642242677, %T A087193 1657887524047959,54732141299289779730,1783584256683646551447, %U A087193 63884853139612229737722392,71016623651822742997810429944,2380864745882038026563515929162,2701273375177028344436110369387929 %N A087193 H(p)/p where p runs through the primes and H(k) is the k-th central hexanomial coefficient (A018901). %H A087193 Amiram Eldar, <a href="/A087193/b087193.txt">Table of n, a(n) for n = 1..210</a> (terms 1..100 from Andrew Howroyd) %F A087193 a(n) = A018901(prime(n))/prime(n). - _Andrew Howroyd_, Jan 08 2020 %t A087193 f[n_] := Max[CoefficientList[Expand[Sum[x^k, {k, 0, 5}]^n], x]]; Table[f[p]/p, {p, Prime[Range[15]]}] (* _Amiram Eldar_, Apr 25 2025 *) %o A087193 (PARI) \\ here b(n) is A018901. %o A087193 b(n) = {if(n==0, 1, sum(k=0, 5*n\12, (-1)^k*binomial(n,k)*binomial(n + 5*n\2 - 6*k - 1, n - 1)))} %o A087193 a(n) = {my(p=prime(n)); b(p)/p} \\ _Andrew Howroyd_, Jan 08 2020 %Y A087193 Cf. A000040 (primes), A018901 (central hexanomials). %K A087193 nonn %O A087193 1,1 %A A087193 _Benoit Cloitre_, Oct 19 2003 %E A087193 Terms a(13) and beyond from _Andrew Howroyd_, Jan 08 2020