This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087205 #25 Sep 08 2022 08:45:11 %S A087205 1,2,0,8,-16,64,-192,640,-2048,6656,-21504,69632,-225280,729088, %T A087205 -2359296,7634944,-24707072,79953920,-258736128,837287936,-2709520384, %U A087205 8768192512,-28374466560,91821703168,-297141272576,961569357824,-3111703805952 %N A087205 a(n) = -2*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2. %C A087205 Inverse binomial transform of A087204. %H A087205 G. C. Greubel, <a href="/A087205/b087205.txt">Table of n, a(n) for n = 0..1000</a> %H A087205 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-2,4) %F A087205 a(n) = (-1-sqrt(5))^n * (1/2-3*sqrt(5)/10) + (-1+sqrt(5))^n * (1/2+3*sqrt(5)/10). %F A087205 G.f.: (4*x +1)/(-4*x^2 +2*x +1). - _Joerg Arndt_, Jul 14 2013 %F A087205 a(n+2) = A085449(n)*(-1)^(n+1); a(n+3) = A063727(n)*(-1)^n. %F A087205 a(n) = -(-2)^n*F(n-2) for n >= 0, with F = A000045, and F(-1) = 1, F(-2) = -1. - _Wolfdieter Lang_, Oct 08 2018 %t A087205 Table[-(-2)^n*Fibonacci[n - 2], {n, 0, 50}] (* _G. C. Greubel_, Oct 08 2018 *) %t A087205 LinearRecurrence[{-2,4},{1,2},30] (* _Harvey P. Dale_, Jan 24 2022 *) %o A087205 (PARI) Vec((4*x+1)/(-4*x^2+2*x+1)+O(x^66)) \\ _Joerg Arndt_, Jul 14 2013 %o A087205 (PARI) vector(50, n, n--; (-1)^(n+1)*2^n*fibonacci(n-2)) \\ _G. C. Greubel_, Oct 08 2018 %o A087205 (Magma) [(-1)^(n+1)*2^n*Fibonacci(n-2): n in [0..50]]; // _G. C. Greubel_, Oct 08 2018 %Y A087205 Cf. A000045, A063727, A084222, A085449, A087204. %K A087205 easy,sign %O A087205 0,2 %A A087205 _Paul Barry_, Aug 25 2003