A087231 a(n) is the smallest number such that the exponent of p=2 factor in 6*a(n)+4 equals n.
1, 4, 6, 2, 26, 10, 106, 42, 426, 170, 1706, 682, 6826, 2730, 27306, 10922, 109226, 43690, 436906, 174762, 1747626, 699050, 6990506, 2796202, 27962026, 11184810, 111848106, 44739242, 447392426, 178956970, 1789569706, 715827882, 7158278826, 2863311530
Offset: 1
Examples
n = 10: m = 6*170+4 = 1024 = 2^10, so a(10) = 170.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4)
Programs
-
PARI
Vec(x*(1 + 3*x - 2*x^2 - 16*x^3 + 16*x^4) / ((1 - x)*(1 - 2*x)*(1 + 2*x)) + O(x^40)) \\ Colin Barker, Mar 16 2017
Formula
For n>2, a(n) = [3/2*2^n - (-2)^n - 2]/3. - Ralf Stephan, May 10 2004
From Colin Barker, Mar 16 2017: (Start)
G.f.: x*(1 + 3*x - 2*x^2 - 16*x^3 + 16*x^4) / ((1 - x)*(1 - 2*x)*(1 + 2*x)).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n>5.
(End)