This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087258 #13 Dec 05 2018 17:23:11 %S A087258 1,2,1,4,1,2,1,8,1,2,1,4,1,2,5,16,1,2,1,20,1,2,1,24,1,2,1,4,1,10,1,32, %T A087258 1,2,5,4,1,2,1,40,1,2,1,4,1,2,1,48,1,2,1,52,1,2,1,56,1,2,1,20,1,2,1, %U A087258 64,1,2,1,68,1,10,1,72,1,2,5,4,1,2,1,80,1,2,1,84,1,2,1,88,1,2,1,4,1,2,1,96,1 %N A087258 a(n) = gcd(n, A025586(n)), greatest common divisor of n and largest value in 3x+1 iteration list started at n. %H A087258 Antti Karttunen, <a href="/A087258/b087258.txt">Table of n, a(n) for n = 1..16384</a> %H A087258 Antti Karttunen, <a href="/A087258/a087258.txt">Data supplement: n, a(n) computed for n = 1..100000</a> %H A087258 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %t A087258 c[x_] := (1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1)c[1]=1; fpl[x_] := Delete[FixedPointList[c, x], -1] Table[GCD[w, Max[fpl[w]]], {w, 1, 256}] %o A087258 (PARI) %o A087258 A025586(n) = { my(r=n); while(n>2, if(n%2, n=3*n+1; if(n>r, r=n), n/=2)); (r); }; \\ From A025586 %o A087258 A087258(n) = gcd(n,A025586(n)); \\ _Antti Karttunen_, Dec 05 2018 %Y A087258 Cf. A006370, A025586, A033496, A087259, A087260, A087262. %K A087258 nonn %O A087258 1,2 %A A087258 _Labos Elemer_, Sep 09 2003