cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087262 Integer quotient of largest and initial values in 3x+1 iteration, started at n.

Original entry on oeis.org

1, 1, 5, 1, 3, 2, 7, 1, 5, 1, 4, 1, 3, 3, 10, 1, 3, 2, 4, 1, 3, 2, 6, 1, 3, 1, 341, 1, 3, 5, 297, 1, 3, 1, 4, 1, 3, 2, 7, 1, 225, 1, 4, 1, 3, 3, 196, 1, 3, 1, 4, 1, 3, 170, 167, 1, 3, 1, 5, 2, 3, 148, 146, 1, 3, 1, 4, 1, 3, 2, 130, 1, 126, 1, 4, 1, 3, 3, 10, 1, 3, 112, 111, 1, 3, 2, 6, 1, 3, 1, 101
Offset: 1

Views

Author

Labos Elemer, Sep 11 2003

Keywords

Comments

Remarkably often, several consecutive terms are identical or close, showing closeness of peaks too: at n=107-111, a(n)=83-86.
If a(n)=1, then the peak is the start-value (per A166245).
It is conjectured that if peak/initial value is an integer then it equals 1.

Crossrefs

Cf. A025586, A056959, A166245 (indices of 1's).

Programs

  • Mathematica
    c[x_] := (1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1)c[1]=1; fpl[x_] := Delete[FixedPointList[c, x], -1] Table[Floor[Max[fpl[w]]/w//N], {w, 1, 256}]

Formula

a(n) = floor(A025586(n)/n).