cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087278 Nonnegative integers whose distance to the nearest square is not greater than 1.

This page as a plain text file.
%I A087278 #25 Sep 14 2022 02:02:10
%S A087278 0,1,2,3,4,5,8,9,10,15,16,17,24,25,26,35,36,37,48,49,50,63,64,65,80,
%T A087278 81,82,99,100,101,120,121,122,143,144,145,168,169,170,195,196,197,224,
%U A087278 225,226,255,256,257,288,289,290,323,324,325,360,361,362,399,400,401
%N A087278 Nonnegative integers whose distance to the nearest square is not greater than 1.
%H A087278 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,-2,0,-1,1).
%F A087278 a(3*k) = (k+1)^2 - 1 = A005563(k+1);
%F A087278 a(3*k+1) = (k+1)^2 = A000290(k+1);
%F A087278 a(3*k+2) = (k+1)^2 + 1 = A002522(k+1).
%F A087278 a(n) = floor(n/3)*(floor(n/3) + 2) + n mod 3.
%F A087278 G.f.: -x*(1+x)*(x^4-2*x^3+x^2+1) / ( (1+x+x^2)^2*(x-1)^3 ). - _R. J. Mathar_, May 22 2019
%F A087278 From _Amiram Eldar_, Sep 14 2022: (Start)
%F A087278 Sum_{n>=1} 1/a(n) = coth(Pi)*Pi/2 + Pi^2/6 + 1/4.
%F A087278 Sum_{n>=1} (-1)^(n+1)/a(n) = cosech(Pi)*Pi/2 + Pi^2/12 - 1/4. (End)
%t A087278 dnsQ[n_]:=Module[{x=Floor[Sqrt[n]]},Min[n-x^2,(x+1)^2-n]<=1]; Select[Range[0,450],dnsQ] (* _Harvey P. Dale_, May 25 2011 *)
%t A087278 Table[n^2+{-1,0,1},{n,20}]//Flatten (* _Harvey P. Dale_, Jan 17 2022 *)
%o A087278 (Python)
%o A087278 def A087278(n):
%o A087278     a, b = divmod(n,3)
%o A087278     return a*(a+2)+b # _Chai Wah Wu_, Aug 03 2022
%Y A087278 Union of A005563, A000290 and A002522.
%Y A087278 Cf. A002264, A010872, A087279.
%K A087278 nonn,easy
%O A087278 0,3
%A A087278 _Reinhard Zumkeller_, Aug 28 2003