cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087279 Nonnegative numbers whose distance to the nearest positive square equals exactly 1.

This page as a plain text file.
%I A087279 #35 Sep 14 2022 05:23:03
%S A087279 0,2,3,5,8,10,15,17,24,26,35,37,48,50,63,65,80,82,99,101,120,122,143,
%T A087279 145,168,170,195,197,224,226,255,257,288,290,323,325,360,362,399,401,
%U A087279 440,442,483,485,528,530,575,577,624,626,675,677,728,730,783,785,840
%N A087279 Nonnegative numbers whose distance to the nearest positive square equals exactly 1.
%C A087279 Union of A005563 and A002522\{1}: a(2*k+1) = (k+1)^2 - 1 = A005563(k); a(2*k) = k^2 + 1 = A002522(k); positive square + 1 or positive square - 1.
%H A087279 Reinhard Zumkeller, <a href="/A087279/b087279.txt">Table of n, a(n) for n = 1..10000</a>
%H A087279 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F A087279 a(1) = 0; a(2*k+1) = a(2*k) + 2*k-1; a(2*k) = a(2*k-1) + 2.
%F A087279 a(n-1) = floor((n+1)/2)^2+(-1)^(n mod 2).
%F A087279 From _Bruno Berselli_, Apr 21 2011: (Start)
%F A087279 G.f.: x^2*(2+x-2*x^2+x^3)/((1+x)^2*(1-x)^3).
%F A087279 a(n) = (2*n*(n+1) - (2*n-7)*(-1)^n+1)/8. (End)
%F A087279 From _Amiram Eldar_, Sep 14 2022: (Start)
%F A087279 Sum_{n>=2} 1/a(n) = coth(Pi)*Pi/2 + 1/4.
%F A087279 Sum_{n>=2} (-1)^n/a(n) = coth(Pi)*Pi/2 - 5/4. (End)
%t A087279 Union[(r = Range[30]^2) - 1, r + 1] (* _Jean-François Alcover_, Oct 25 2013 *)
%t A087279 Flatten[#+{1,-1}&/@(Range[30]^2)]//Union (* _Harvey P. Dale_, Oct 15 2016 *)
%o A087279 (Magma) &cat[[n^2-1,n^2+1]: n in [1..30]]; // _Bruno Berselli_, Apr 21 2011
%o A087279 (PARI) a(n)=if(n%2,(n+1)^2/4-1,n^2/4+1) \\ _Charles R Greathouse IV_, Apr 25 2012
%o A087279 (Haskell)
%o A087279 a087279 n = a087279_list !! (n-1)
%o A087279 a087279_list = 0 : 2 : f (drop 2 a000290_list)
%o A087279    where f (x:xs) = x-1 : x+1 : f xs
%o A087279 -- _Reinhard Zumkeller_, Nov 01 2013
%o A087279 (Python)
%o A087279 def A087279(n): return ((n+(b:=n&1))**2>>2)+1-(b<<1) # _Chai Wah Wu_, Aug 03 2022
%Y A087279 Cf. A000290, A004526, A000035, A087278.
%Y A087279 Cf. A005563, A002522.
%K A087279 nonn,easy
%O A087279 1,2
%A A087279 _Reinhard Zumkeller_, Aug 28 2003
%E A087279 _Franklin T. Adams-Watters_ pointed out on Jun 26 2007 that there were problems with the first couple of terms. I have made some changes, so now the definition matches the sequence. But some of the comments may need further minor adjustments. - _N. J. A. Sloane_, Jun 01 2008