cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087295 Successive remainders when computing the Euclidean algorithm for (n,m) where m is any positive integer having no common factor with n, gives a list ending with a sublist of Fibonacci sequence. Find m such that this sublist has the greatest length and define a(n) as this length.

Table of values

n a(n)
0 0
1 0
2 1
3 2
4 1
5 3
6 1
7 2
8 4
9 2
10 1
11 3
12 2
13 5
14 3
15 2
16 2
17 3
18 4
19 3
20 3
21 6
22 2
23 4
24 2
25 3
26 3
27 3
28 4
29 5
30 3
31 4
32 3
33 4
34 7
35 3
36 3
37 5
38 4
39 3
40 2
41 4
42 2
43 4
44 4
45 5
46 3
47 6
48 4
49 4
50 5
51 4
52 3
53 5
54 3
55 8
56 3
57 4
58 4
59 4
60 6
61 5
62 3
63 4
64 4
65 3
66 5
67 4
68 4
69 5
70 4
71 5
72 3
73 6
74 4
75 4
76 7
77 5
78 4
79 5
80 4
81 6
82 5
83 4
84 3
85 5
86 6
87 4
88 4
89 9
90 3
91 4
92 5
93 5
94 4
95 5
96 4
97 7
98 5
99 6
100 4
101 5
102 3
103 5
104 4

List of values

[0, 0, 1, 2, 1, 3, 1, 2, 4, 2, 1, 3, 2, 5, 3, 2, 2, 3, 4, 3, 3, 6, 2, 4, 2, 3, 3, 3, 4, 5, 3, 4, 3, 4, 7, 3, 3, 5, 4, 3, 2, 4, 2, 4, 4, 5, 3, 6, 4, 4, 5, 4, 3, 5, 3, 8, 3, 4, 4, 4, 6, 5, 3, 4, 4, 3, 5, 4, 4, 5, 4, 5, 3, 6, 4, 4, 7, 5, 4, 5, 4, 6, 5, 4, 3, 5, 6, 4, 4, 9, 3, 4, 5, 5, 4, 5, 4, 7, 5, 6, 4, 5, 3, 5, 4]