cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087315 a(n) = Product_{k=1..n} prime(k)^prime(n-k+1).

This page as a plain text file.
%I A087315 #42 Sep 08 2022 08:45:11
%S A087315 1,4,72,21600,190512000,580909190400000,428616352408083840000000,
%T A087315 859278392084450410309036800000000000,
%U A087315 2097197194438629126172451944256706311040000000000000
%N A087315 a(n) = Product_{k=1..n} prime(k)^prime(n-k+1).
%H A087315 G. C. Greubel, <a href="/A087315/b087315.txt">Table of n, a(n) for n = 0..23</a>
%e A087315 a(3) = 2^5*3^3*5^2 = 21600.
%p A087315 seq(product(ithprime(k)^ithprime(n-k+1), k=1..n), n=0..10);
%t A087315 Table[Product[Prime[k]^Prime[n - k + 1], {k, 1, n}], {n, 0, 10}] (* _G. C. Greubel_, Oct 14 2018 *)
%o A087315 (Sage) [prod(nth_prime(i)^nth_prime(k-i+1) for i in (1..k)) for k in (0..10)] # _Giuseppe Coppoletta_, Nov 03 2014
%o A087315 (PARI) for(n=0, 10, print1(prod(k=1,n, prime(k)^prime(n-k+1)), ", ")) \\ _G. C. Greubel_, Oct 14 2018
%o A087315 (Magma) [1] cat [(&*[NthPrime(k)^(NthPrime(n-k+1)): k in [1..n]]): n in [1..10]]; // _G. C. Greubel_, Oct 14 2018
%Y A087315 Cf. A006939, A002110, A025487, A004394, A002093, A002182, A055932, A025487, A089247, A071364, A097320, A046523, A056166, A114129, A053810.
%K A087315 nonn
%O A087315 0,2
%A A087315 _Amarnath Murthy_, Sep 03 2003
%E A087315 More terms from _Jorge Coveiro_, Dec 22 2004
%E A087315 Corrected by _David Wasserman_, May 02 2005