This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087327 #18 Jul 18 2020 10:04:49 %S A087327 1,2,6,8,13,18,25,32,41,50,61,72,85,98,113,128,145,162,181,200,221, %T A087327 242,265,288,313,338,365,392,421,450,481,512,545,578,613,648,685,722, %U A087327 761,800,841,882,925,968,1013,1058,1105,1152,1201,1250,1301,1352,1405,1458 %N A087327 Independence numbers for KT_2 knight on triangular board. %H A087327 Colin Barker, <a href="/A087327/b087327.txt">Table of n, a(n) for n = 1..1000</a> %H A087327 J.-P. Bode and H. Harborth, <a href="https://doi.org/10.1016/S0012-365X(03)00181-X">Independence for knights on hexagon and triangle boards</a>, Discrete Math., 272 (2003), 27-35. %H A087327 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1). %F A087327 a(n) = ceiling(n^2/2) except for n=3. %F A087327 From _Colin Barker_, Feb 02 2016: (Start) %F A087327 a(n) = (2*n^2-(-1)^n+1)/4 for n>3. %F A087327 a(n) = n^2/2 for even n>3; a(n) = (n^2+1)/2 for odd n>3. %F A087327 a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3. %F A087327 G.f.: x*(1+2*x^2-2*x^3+2*x^5-x^6) / ((1-x)^3*(1+x)). (End) %t A087327 LinearRecurrence[{2,0,-2,1},{1,2,6,8,13,18,25},60] (* _Harvey P. Dale_, Mar 14 2018 *) %o A087327 (PARI) Vec(x*(1+2*x^2-2*x^3+2*x^5-x^6)/((1-x)^3*(1+x)) + O(x^100)) \\ _Colin Barker_, Feb 02 2016 %Y A087327 Cf. A000982, A030978, A087328, A087329. %K A087327 nonn,easy %O A087327 1,2 %A A087327 _N. J. A. Sloane_, Oct 21 2003 %E A087327 More terms from _David Wasserman_, May 06 2005