cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087329 Independence numbers for KT_4 knight on hexagonal board.

This page as a plain text file.
%I A087329 #27 Mar 18 2024 12:53:17
%S A087329 1,3,3,4,7,9,12,15,19,22,25,28,37,40,46,51,61,66,71,76,91,96,103,111,
%T A087329 127
%N A087329 Independence numbers for KT_4 knight on hexagonal board.
%H A087329 J.-P. Bode and H. Harborth, <a href="https://doi.org/10.1016/S0012-365X(03)00181-X">Independence for knights on hexagon and triangle boards</a>, Discrete Math., 272 (2003), 27-35.
%H A087329 Andy Huchala, <a href="/A087329/a087329_1.py.txt">Python program</a>.
%F A087329 a(4*n+1) = 3*n^2 + 3*n + 1 = A003215(n) from Bode and Harborth. - _Andy Huchala_, Mar 16 2024
%Y A087329 Cf.  A003215, A087327, A087328.
%K A087329 nonn,more
%O A087329 1,2
%A A087329 _N. J. A. Sloane_, Oct 21 2003
%E A087329 a(17)-a(25) from _Andy Huchala_, Mar 16 2024