This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A087331 #7 Dec 05 2013 19:56:21 %S A087331 1,2,6,66,6666,111111,222222,111111111111,222222222222, %T A087331 222222222222222222,111111111111111111111111,222222222222222222222222, %U A087331 22222222222222222222222222222222,111111111111111111111111111111 %N A087331 Smallest number with all identical digits having n distinct prime divisors. %C A087331 The conjecture that 'for n > 2, a(n) == 0 (mod 3)' is not true since a(12) = 32 2's which is == 1 (mod 3). - _Robert G. Wilson v_ %C A087331 Sequence could be represented by citing the number of repeated digits concatenated with that digit, e.g., a(8) = 122. See A087450. %e A087331 a(6) = 22222222 because the 6 distinct prime divisors of a(6) are 2, 3, 7, 11, 13, and 37. %t A087331 PrimeFactors[n_Integer] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; Do[k = 1; While[t = Table[j*(10^k - 1)/9, {j, 1, 9}]; l = Map[ Length, Map[ PrimeFactors, t]]; Position[l, n] == {}, k++ ]; Print[ t[[Position[l, n] [[1, 1]]]]], {n, 0, 13}] %K A087331 base,nonn %O A087331 1,2 %A A087331 _Amarnath Murthy_, Sep 05 2003 %E A087331 Edited, corrected and extended by _Robert G. Wilson v_, Sep 06 2003