A087334 a(1) = 3, then smallest number such that every partial product + 1 is a distinct square.
3, 5, 8, 3, 14, 40, 1270, 15874, 251984126, 28673777890680889, 2806729404119595479093401735, 15973219322678152520589944038429546981629762353084607
Offset: 1
Keywords
Examples
3 + 1 = 4, 3*5 + 1 = 16, 3*5*8 + 1 = 121 etc. are squares.
Programs
-
Mathematica
p = 1; Do[k = 2; While[ !IntegerQ[Sqrt[p*k + 1]], k++ ]; Print[k]; p *= k, {n, 1, 9}] (* Ryan Propper *)
Extensions
Edited by Don Reble, Sep 12 2003
Entry revised by N. J. A. Sloane, Aug 29 2006