cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087368 Prime-indexed primes (PIPs) whose digits are all primes.

Original entry on oeis.org

3, 5, 277, 353, 773, 3733, 5557, 7523, 7753, 25357, 25733, 27733, 32233, 32323, 32533, 37273, 53233, 53353, 53377, 53777, 55733, 72337, 72727, 73757, 77377, 77557, 232523, 272333, 275773, 322727, 327553, 327757, 333233, 352357, 353527
Offset: 1

Views

Author

Cino Hilliard, Oct 21 2003

Keywords

Comments

Chances are these numbers are infinite since PIPs are infinite.

Examples

			59 is prime, the 59th prime is 277, and 2 and 7 are primes.
		

Crossrefs

Intersection of A006450 and A046034.

Programs

  • Mathematica
    Select[Flatten[Table[FromDigits /@ Tuples[Prime[Range[4]], k], {k, 1, 6}]], PrimeQ[#] && PrimeQ[PrimePi[#]] &] (* Amiram Eldar, Jul 08 2024 *)
  • PARI
    pip(n) = { for(x=1,n, flag=1; y=prime(prime(x)); y2=y; for(j=1,length(Str(y)), r = y%10; if(!isprime(r),flag=0); y = floor(y/10); ); if(flag,print1(y2",")); ) }

Extensions

Offset corrected by Amiram Eldar, Jul 08 2024