cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A282690 a(n) is the smallest number m, such that m+n is the next prime and m-n is the previous prime.

Original entry on oeis.org

4, 5, 26, 93, 144, 53, 120, 1839, 532, 897, 1140, 211, 2490, 2985, 4312, 5607, 1344, 9569, 30612, 19353, 16162, 15705, 81486, 16787, 31932, 19635, 35644, 82101, 44322, 43361, 34092, 89721, 162176, 134547, 173394, 31433, 404634, 212739, 188068, 542643, 265662
Offset: 1

Views

Author

Daniel Suteu, Feb 20 2017

Keywords

Examples

			For n = 6, a(6) = 53, because the next prime after 53 is 59 and the previous prime before 53 is 47, where both have an equal distance of 6 from 53, which is the smallest number with this property.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[Nand[k - n == NextPrime[k, -1], k + n == NextPrime@ k], k++]; k, {n, 41}] (* Michael De Vlieger, Feb 20 2017 *)
  • Perl
    use ntheory qw(:all);
    for (my $k = 1 ; ; ++$k) {
        for (my $n = 1 ; ; ++$n) {
            my $p = prev_prime($n) || next;
            my $q = next_prime($n);
            if ($n-$p == $k and $q-$n == $k) {
                printf("%s %s\n", $k, $n);
                last;
            }
        }
    }

A282687 a(n) = strictly increasing number m, such that m+n is the next prime and m-n is the previous prime.

Original entry on oeis.org

4, 5, 26, 93, 144, 157, 300, 1839, 1922, 3099, 3240, 4189, 5544, 5967, 6506, 10815, 11760, 12871, 30612, 33267, 35002, 36411, 81486, 86653, 95676, 103263, 106060, 153219, 181332, 189097, 190440, 288615, 294596, 326403, 399318, 507253, 515004, 570291, 642320
Offset: 1

Views

Author

Daniel Suteu, Feb 20 2017

Keywords

Examples

			For n = 5, a(5) = 144, because the next prime after 144 is 149 and the previous prime before 144 is 139, where both have an equal distance of 5 from 144.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[n == 1, k = 1, k = Max@ a + 1]; While[Nand[k - n == NextPrime[k, -1], k + n == NextPrime@ k], k++]; AppendTo[a, k], {n, 41}]; a (* Michael De Vlieger, Feb 20 2017 *)
  • Perl
    use ntheory qw(:all);
    for (my ($n, $k) = (1, 1) ; ; ++$n) {
        my $p = prev_prime($n) || next;
        my $q = next_prime($n);
        if ($n-$p == $k and $q-$n == $k) {
            printf("%s %s\n", $k++, $n);
        }
    }

A382110 Smallest number k such that k-n and k+n are consecutive primes and k has exactly n distinct prime factors.

Original entry on oeis.org

4, 15, 154, 3045, 22386, 2467465, 3015870, 368961285, 6326289970, 2313524242029, 1568018377380, 5808562826801735, 1575649493651310, 6177821212870783905, 171718219950879367766, 2039004035049368722335, 13156579658122684173390, 112733682549950000276753015
Offset: 1

Views

Author

Jean-Marc Rebert, Mar 16 2025

Keywords

Comments

a(10) > 5*10^11, if it exists. - Amiram Eldar, Mar 18 2025
a(10) <= 2313524242029. a(11) <= 1811331573870. - Giorgos Kalogeropoulos, Mar 21 2025

Examples

			a(1) = 4, because 4 - 1 = 3 and 4 + 1 = 5 are two consecutive primes and omega(4) = 1.
a(2) = 15, because 15 - 2 = 13 and 15 + 2 = 17 are two consecutive primes and omega(15) = 2.
		

Crossrefs

Programs

  • Mathematica
    Do[k=0;Until[PrimeQ[k-n]&&NextPrime[k-n]==k+n&&PrimeNu[k]==n,k++];a[n]=k,{n,7}];Array[a,7] (* James C. McMahon, Mar 20 2025 *)
  • PARI
    list(len) = {my(v = vector(len), prv = 3, c = 0, d); forprime(p = 5, , d = (p-prv)/2; if(d <= len && v[d] == 0 && omega(prv+d) == d, c++; v[d] = prv + d; if(c == len, break)); prv = p); v;} \\ Amiram Eldar, Mar 18 2025
    
  • PARI
    generate(A, B, n) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); forprime(q=p, sqrtnint(B\m, j), my(v=m*q); while(v <= B, if(j==1, if(v>=A && (nextprime(v) - v == n) && (v - precprime(v) == n), listput(list, v)), if(v*(q+1) <= B, list=concat(list, f(v, q+1, j-1)))); v *= q)); list); vecsort(Vec(f(1, if(n%2 == 0, 3, 2), n)));
    a(n) = my(x=vecprod(primes(n)), y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Mar 25 2025

Extensions

a(10)-a(18) from Daniel Suteu, Mar 25 2025

A306475 Smallest nonprime number <= 10^n (n>=1) with maximum distance from a prime.

Original entry on oeis.org

9, 93, 897, 9569, 31433, 492170, 4652430, 47326803, 436273150, 4302407536, 42652618575, 738832928197, 7177162612050, 90874329411895, 218209405436996, 1693182318746937, 80873624627235459, 804212830686678390
Offset: 1

Views

Author

David Cobac, Feb 18 2019

Keywords

Comments

Each number is a mean of two consecutive primes.
Since, except 2, primes are odd numbers, this mean is an integer.

Examples

			For n=1: first prime numbers are 2, 3, 5, 7 and 11. Maximum difference between two consecutive primes is 4 between 7 and 11 thus a(1)=9.
For n=4: maximum difference between two primes less than 10^4 is 36, which occurs once: between 9551 and 9587. a(4)=(9551 + 9587)/2 = 9569.
		

Crossrefs

Extensions

More terms (using the b-file at A002386) from Jon E. Schoenfield, Feb 19 2019
Showing 1-4 of 4 results.