cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A087395 Primes in which the frequency of every digit is the same and is at least 2.

This page as a plain text file.
%I A087395 #18 Nov 19 2022 20:18:37
%S A087395 11,100313,107071,110909,114343,115757,116969,117373,117979,118787,
%T A087395 119797,121727,127217,127271,131939,133717,133919,134341,136163,
%U A087395 136361,137713,140401,141499,142421,143413,145451,149419,149491,155717,157571
%N A087395 Primes in which the frequency of every digit is the same and is at least 2.
%C A087395 If d is prime, the only terms with d digits are repunit primes (A004022). - _Robert Israel_, Nov 18 2022
%H A087395 Michael S. Branicky, <a href="/A087395/b087395.txt">Table of n, a(n) for n = 1..10000</a>
%H A087395 Michael S. Branicky, <a href="/A087395/a087395.py.txt">Python program</a>
%e A087395 100313 is a term in which each of the digits 1, 3 and 0 occurs with frequency 2.
%p A087395 filter:= proc(n) local L,d,S;
%p A087395   if not isprime(n) then return false fi;
%p A087395   L:= convert(n,base,10);
%p A087395   S:={seq(numboccur(d,L),d=convert(L,set))};
%p A087395   nops(S) = 1 and S[1]>=2
%p A087395 end proc:
%p A087395 select(filter, [seq(i,i=11 .. 200000, 2)]); # _Robert Israel_, Nov 18 2022
%t A087395 fpQ[n_]:=Module[{dc=Union[Cases[DigitCount[n],Except[0]]]}, First[dc]>1 &&Length[dc]==1]; Select[Prime[Range[14500]],fpQ] (* _Harvey P. Dale_, Apr 22 2011 *)
%o A087395 (Python) # see linked program for a faster version
%o A087395 from sympy import isprime
%o A087395 from collections import Counter
%o A087395 from itertools import count, islice
%o A087395 def ok(n):
%o A087395     cv = Counter(str(n)).values()
%o A087395     return min(cv) >= 2 and len(set(cv)) == 1 and isprime(n)
%o A087395 def agen():
%o A087395     evdigs = (k for d in count(2, 2) for k in range(10**(d-1)+1, 10**d, 2))
%o A087395     yield from (k for k in evdigs if ok(k))
%o A087395 print(list(islice(agen(), 30))) # _Michael S. Branicky_, Nov 18 2022
%Y A087395 Contains A004022.
%K A087395 base,nonn
%O A087395 1,1
%A A087395 _Amarnath Murthy_, Sep 10 2003
%E A087395 Corrected and extended by _David Wasserman_, May 31 2005